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30 September 2010, in partial fulf llment of the requirements for the degree of
Doctor of Philosophy.

Abstract

Much of the recent research in ocean acoustics has focused on developing meth-
ods to exploit the effects that the sea surface and seaf oor have on acoustic propaga-
tion. Many of those methods require detailed knowledge of the acoustic properties
of the seaf oor and the sound speed prof le (SSP), which limits their applicability.
The range-frequency waveguide invariant describes striations that often appear in
plots of acoustic intensity versus range and frequency. These range-frequency stri-
ations have properties that depend strongly on the frequency of the acoustic source
and on distance between the acoustic source and receiver, but that depend mildly on
the SSP and seaf oor properties. Because of this dependence, the waveguide invari-
ant can be utilized for applications such as passive and active sonar, time-reversal
mirrors, and array processing, even when the SSP or the seaf oor properties are
not well known. This thesis develops a framework for understanding and calculat-
ing the waveguide invariant, and uses that framework to develop signal processing
techniques for the waveguide invariant.

A method for passively estimating the range from an acoustic source to a re-
ceiver is developed, and tested on experimental data. Heuristics are developed to
estimate the minimum source bandwidth and minimum horizontal aperture required
for range estimation.

A semi-analytic formula for the waveguide invariant is derived using WKB ap-
proximation along with a normal mode description of the acoustic feld in a range-
independent waveguide. This formula is applicable to waveguides with arbitrary
SSPs, and reveals precisely how the SSP and the seaf oor ref ection coeff cient af-
fect the value of the waveguide invariant.

Previous research has shown that the waveguide invariant range-frequency stri-
ations can be observed using a single hydrophone or a horizontal line array (HLA)
of hydrophones. This thesis shows that traditional array processing techniques are
sometimes inadequate for the purpose of observing range-frequency striations us-
ing a HLA. Array processing techniques designed specif cally for observing range-



frequency striations are developed and demonstrated.

Finally, a relationship between the waveguide invariant and wavenumber inte-
grations is derived, which may be useful for studying range-frequency striations in
elastic environments such as ice-covered waveguides.

Thesis Supervisor: Henrik Schmidt
Title: Professor of Mechanical and Ocean Engineering
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Chapter 1

Introduction

Sound provides an unparalleled means of sensing in the vast, dark oceans that cover
70% of the Earth. Only with sound can one detect a submerged whale from hun-
dreds of miles away [55], or measure the average temperature of an entire ocean
in a matter of hours [65]. Although sound is a powerful method for sensing in
the ocean, it’s an indirect one: the desired information must be extracted from an
acoustic signal.

Humans do this type of acoustic sensing on a daily basis (albeit, above the wa-
ter). A person can determine the type of building he is walking in — a large stone
cathedral, or an off ce building? — based solely on the sound of his footsteps. He
could even guess roughly how large the cathedral is, based on how much rever-
beration he hears. But to answer questions like these quantitatively — how many
meters wide is the cathedral? — quantitative methods must be used.

It is usually not obvious how to extract the desired information from the raw
acoustic signal, which is nothing more than a time-series of pressure recorded by
a hydrophone. The signal usually contains not only the information of interest,
but also other information that is not of interest. The sound caused by crashing
surface waves may not be of interest when one is trying to detect the presence
of whale vocalizations. Conversely, the presence of whale vocalizations may not
be of interest when one is trying to detect crashing surface waves. One of the
main challenges in ocean-acoustic sensing is to create signal processing techniques

that distill out the information of interest (e.g., whale vocalizations) while ignoring
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everything else (e.g., sound of waves crashing).

How does one go about creating such signal processing techniques? Some-
times this can be done with standard engineering techniques, such as using a low-
pass fIter to reject high-frequency noise. But often in ocean acoustics, the signal
processing techniques come from an understanding of the acoustics itself.

For example, ray theory reveals that some of the acoustic energy in the ocean
propagates without ever being affected by the seaf oor. If one was trying to acous-
tically determine the sound speed prof le (SSP) of the water column, and the prop-
erties of the seaf oor were unknown and not of interest, one could use ray theory
develop a signal processing technique that extracts only the features of the sig-
nal that were not affected by the seaf oor. The output of such a signal processing
technique could then be used to infer properties of the water column without ever

having to be concerned with the properties of the seaf oor.

This thesis focuses on a feature of acoustic propagation in a waveguide known
as the “waveguide invariant.”” The waveguide invariant is a parameter denoted by
B which summarizes the frequency dependence of a waveguide’s Green’s function.
The waveguide invariant is important not only because it’s a fundamental property
of the ocean acoustic waveguide, but also because it can be exploited to extract use-
ful information from an acoustic signal when the details of the ocean environment
(the SSP and seaf oor properties) are unknown.

Many signal processing technique that utilize the physics of waveguide propa-
gation, such as matched feld processing, require detailed knowledge of the ocean
environment. The accuracy of such methods tends to be very sensitive to mis-
matches between the actual environment and the assumed environment. In contrast,
signal processing techniques based on the waveguide invariant often require only a
minimal amount of knowledge about the environment. Because of this, techniques
based on the waveguide invariant are applicable even when the details of the SSP
or the seaf oor are unknown.

The waveguide invariant has been used for a wide range of applications such
as: passive range estimation [58, 56, 62], matched f eld processing [59, 23], active
sonar [49, 27, 25], array processing [37, 57, 66], time-reversal mirrors [32, 54, 38,

39], and more (See Appendix A for a complete review of the waveguide invari-
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ant literature). Despite its many uses, the waveguide invariant is not well studied
compared to other ocean-acoustic phenomena.

The goal of this thesis is to improve upon the latest understanding of the wave-
guide invariant and related signal processing so that future applications of the wave-

guide invariant can be better executed.

1.1 Thesis outline and contributions

Chapters 3 - 6 are the original research contributions of this thesis.

Chapter 2 This chapter provides the technical background for the thesis; it ex-
plains normal mode propagation in a range-independent waveguide, and pro-

vides a detailed introduction to the range-frequency waveguide invariant.

Chapter 3 This chapter presents one of the most straight-forward applications
of the waveguide invariant: estimating the range to a broadband acoustic
source in a shallow-water waveguide using a single acoustic receiver towed
directly toward the acoustic source. Previous research has shown that a two-
dimensional Fourier transform can be used to extract information about the
slope of the waveguide invariant striations. This chapter extends that research
by relating the ocean-acoustic environmental parameters to the signal pro-
cessing parameters, and applying the resulting signal processing technique
to estimate the range to the acoustic source (assuming 5 = 1). Heuris-
tics are developed to estimate the minimum source bandwidth and minimum
horizontal aperture required for range estimation. The range estimation al-
gorithm is tested on experimental and simulated data for source ranges of
500-2200 m and frequencies from 350 to 700 Hz. The algorithm is accurate
to within approximately 25% for the cases tested and requires only a minimal

amount of a priori knowledge about the environment.

Chapter 4 This chapter addresses the question: “Why is the waveguide invari-
ant, invariant?” Although it has been shown analytically that 5 ~ 1 for ideal
waveguides, numerical and experimental results have revealed that 5 ~ 1

for many (but not all) realistic shallow-water waveguides as well. Ocean-

15



acoustic techniques that utilize the waveguide invariant, such as those pre-
sented in Ch. 3, often assume 8 = 1. Therefore, it is important to under-
stand why 5 ~ 1 in many realistic waveguides, and when /3 deviates greatly

from 1.

This chapter presents a method for calculating 5 using a modal WKB de-
scription of the acoustic feld in a range-independent waveguide, which re-
veals a straightforward relationship between the SSP and 3. That relationship
is used to illustrate why non-uniformities in the SSP sometimes have such a
small effect on [ and under what circumstances the non-uniformities will
have a large effect on 5. The method relies on implicit differentiation and
thus does not explicitly solve for the horizontal wavenumbers of the modes,
making it applicable to waveguides with arbitrary sound speed prof les and
fuid bottom half-spaces. Several examples are given, including an analytic

estimate of 3 in a Pekeris waveguide.

Chapter 5 This chapter generalizes a previously known result which showed that
a horizontal line array (HLA) can be used to observe waveguide invariant stri-
ations from one source while rejecting noise from other sources. It is shown
that array weights commonly used for planewave beamforming, such as uni-
form weights, can have the unintended effect of suppressing some the desired
striations. Insights gained from Ch. 4 are used to show that even when noise
is not present, array processing can still be useful because it can suppress
components of the striation pattern that are not useful for acoustic sensing.
Experimental data is used to illustrate the ability of an array processor to

preserve the desired striations while rejecting noise.

Chapter 6 This chapter shows that although the waveguide invariant is typically
defned in terms of normal modes or ray theory, it can also be related to the
wavenumber-integration method for calculating the acoustic f eld in a waveg-
uide. The Wiener-Khinchin Theorem is used to show that the autocorrelation
of the wavenumber-integration kernel, when plotted versus wavenumber dif-
ference and frequency, contains striations that can be described by the waveg-

uide invariant.
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Chapter 7 This chapter summarizes and concludes the thesis. Several specif ¢

suggestions for future areas of research are given.

Appendix A This appendix is an extensive but brief review of the waveguide
invariant literature, most of which is not required to support the conclusions

of the thesis but is included for the interested reader.
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Chapter 2

Background

This chapter brief'y reviews the aspects of ocean acoustics that are relevant for this
thesis — normal modes in a range-independent waveguide — and then provides a

detailed introduction to the range-frequency waveguide invariant.

2.1 Acoustic propagation in a waveguide

We restrict our attention the acoustic feld caused by a point source in a range-
independent ocean waveguide. As far the acoustics is concerned, the environment
is fully described by the sound speed prof le (SSP) in the water column, and the
sound speed and density profle of the seaf oor. If one is only interested in the
acoustic feld in the water column, then the seaf oor can be fully characterized by
its ref ection coeff cient as function of horizontal wavenumber and frequency.

As simple as that physical model may seem, a tremendous amount of research
was required to develop techniques to accurately calculate the acoustic feld in such
a waveguide. The acoustic feld be calculated and conceptually understood using
ray theory, normal modes, or wavenumber integration. Other methods can be used
for calculating the acoustic feld, such as fnite element analysis or the parabolic
equation, but those methods do not lend themselves to understanding the underlying
acoustics of propagation in a waveguide.

The concepts in this thesis are most readily understood using the normal mode

description of the acoustic feld.
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2.2 Normal modes

This section explains the aspects of normal modes that are important for under-
standing the waveguide invariant, including some obscure topics not typically cov-
ered in textbooks. A full derivation and interpretation of normal modes can be
found in [33, Chs. 2 and 5], as well as [60] and [10].

When the acoustic source and receiver are separated by a distance greater than
a few water depths, the complex pressure as a function of range from the source r,

depth z, and frequency w can be written as [33, Eq. 5.14]

P, 2,w) = —— TS (2 (2) @.1)

p(zs)V8mr

where z, is the source depth, k.., is the horizontal wavenumber of mode m, and
¥m(z) is the mode function of mode m. k., and v, (z) usually depend on w, the
sound speed profle ¢(z), and seaf oor properties, and are obtained by solving the

depth-separated wave equation [33, Eq. 5.90]

2 ( w )2
2o ((c85) ) e =0 @2)

along with the boundary conditions at the top and bottom of the waveguide, which

depend on the acoustic properties of the sea surface and seaf oor. Equation 2.2 is a
second-order differential equation, for which a discrete number of solutions exist,

each one denoted by the mode number m.

Ky and 1, () can be calculated analytically in an ideal waveguide [33, Sec. 2.4.4]
and semi-analytically in a Pekeris waveguide [33, Sec. 2.4.5]. Semi-analytic solu-
tions exist for other situations as well, such as surface-trapped modes in an n’-
linear waveguide ([33, Sec. 2.5.1], [11, Sec. 6.6.1]), although the solutions are in
terms of non-elementary math functions. (See [9, Sec. 3] and [10, Sec. 4.4.1 ] for a

complete list of known analytic solutions.)

For waveguides with complicated sound speed prof les and non-vacuum seaf oors
(i.e., fuid or solid), k., and ¥,,,(z) do not have exact analytic solutions. They can

be calculated numerically using ocean acoustic software such as Kraken [48]. Or
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they can be calculated approximately using the WKB approximation or perturba-
tion theory ([50, Sec. 1.A], [36, Sec. 3.1]). The WKB approximation provides
insight into how the environment (SSP, seaf oor) affects k;.,,, and ,,(z), and is
discussed in Sec. 4.2 and Appendix B.

2.2.1 Basic interpretation of normal modes

Regardless of how the k,,, values are calculated, the complex pressure feld in
Eq. (2.1) is a sum of modes, each one propagating with its own horizontal wavenum-
ber k,.,,,. In this thesis we assume the acoustic medium has no attenuation so that all
the k., are real, though many of the concepts presented could likely be extended
to the case of mildly attenuating media.

Small changes in the SSP or the bottom boundary conditions (seaf oor proper-
ties) will usually lead to small changes in the values of the horizontal wavenumbers
and the shapes of mode functions. But because k.., is multiplied by the range r
in Eq. (2.1), which is typically on the order of 1000 m, small changes in the %,
lead to large changes in the structure of the complex pressure f eld. An example of
this is illustrated in Figs. 2.4 (b) and (e). For this reason, inversion schemes such
as matched feld processing that use the complex pressure level as measured at a
specif ¢ range, depth, and frequency, are extremely sensitive to environmental mis-
match. Small modeling errors (be it an incorrect environmental parameter value
like the speed of sound in a sediment layer, or an incorrect parametrization of the
environment like not modeling enough sediment layers) can prevent an inversion
scheme from working correctly.

Another quantity of interest is the scalar acoustic intensity, which is the square
of the magnitude of the complex pressure. The acoustic intensity as a function of
range can be thought of as an interference pattern between all of the modes [33,
Sec. 2.4.4-5], and will be discussed further in Sec. 2.3.

2.2.2 Types of modes (terminology)

Understanding the relationship between a mode’s horizontal wavenumber and the
SSP is important for understanding the waveguide invariant. A brief summary of

the relationship is given here, but more detailed descriptions can be found in [60,
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Sec. 2.9], [33, Secs. 2.5.2 and 5.6], and [11, Sec. 6.7]. The terminology used here
is from [33, Sec. 1.4.1] where it was used in the context of acoustic rays.
Surface-Reflected Bottom-Reflected (SRB&les are modes that have

Y <k < ﬁ where ¢pax 1S the maximum sound speed in the watercolumn

Cseaf oor

(not including the seaf oor), and cgeafoor 1S the sound speed of the seaf oor. (For a
vacuum or rigid seaf oor, use Cseafoor = 00).

The term non-SRBR will be used to refer to any mode that is not an SRBR
mode. Non-SRBR modes always have ﬁ < krm < ﬁ where Cpi, is the mini-
mum sound speed on the watercolumn. Examples of non-SRBR modes are surface-

trapped modes, bottom-trapped modes, and waterborne modes.

z=0 >

ZZdﬁ/// II T

]
T
w w w

Cseafloor Cmax Cmin

|<— SRBR —— > [«—Non-SRBR—>

Figure 2.1: Illustration showing the relationship between the sound speed profle,
the horizontal wavenumber, and the type of mode. The vertical axis is depth and
the horizontal axis is wavenumber. The horizontal axis also represents the hori-
zontal wavenumber k,.,, of any given mode. Modes with horizontal wavenumbers
between —~— and ﬁ are surface-ref ected bottom-ref ected (SRBR) modes.

Cseaf oor

2.2.3 The modal sum

As shown in Eq. (2.1), the total acoustic pressure is a summation of terms from
M normal modes. This modal sum has an interesting property that is essential for
understanding the waveguide invariant, but is often not discussed.

In Chuprov’s original derivation of the waveguide invariant [18], he states that
the acoustic feld in a range-independent ocean is typically “composed of a limited

number of groups of modes with close [mode] numbers.” This subsection explains
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why that is the case, by summarizing the argument presented in [20, Sec. 3.1.6].!

As discussed in [33, Sec. 5.2.1], the mode number m is a monotonic function of
k, (this property can also be understood using the WKB approximation in Ch. 4).
Thus, a particular range of k,. values corresponds to a group of adjacent mode
numbers. The quote from Chuprov in the previous paragraph can then be stated
as: the complex pressure feld at a given range is usually dominated by a group
of modes that lie within a small range of k, values — or possibly a few groups of
modes with a few distinct ranges of k,. values.

Each term of the summation in Eq. (2.1) represents a mode’s contribution to the
total complex pressure at a fxed range, depth, and frequency. That contribution is
a complex number with a magnitude and phase, which can be plotted as a vector in
the complex plane. The vector corresponding to the f rst mode can be plotted from
the origin of the complex plane. The vector corresponding to the second mode can
plotted from the end of the frst mode’s vector; the third one plotted from the end
of the second one, and so on, as shown in Fig. 2.2 (a). The end of the vector from
the M-th mode is then the total complex pressure level at the fxed range, depth,
and frequency.

From Eq. (2.1), it can be seen that the phase difference between term (m) and
term (m — 1) is 7(kpm — Ky (—1) ). Groups of modes that approximately satisfy the
equation

7 (krm — kp(m—1)) = 2N (2.3)

where N is an integer will all have approximately the same phase and thus will add
constructively (they will all be pointing in the same direction in the complex plane);
all other modes will be distributed in “random” directions in the complex plane
and will approximately cancel each other out, roughly speaking. This argument is
similar to the argument used to justify the stationary phase method of integration.

One can write Eq. (2.3) as

Okpyy 27N
om 7

(2.4)

to see that the complex pressure level is dominated by a few groups of modes (each

'118] actually referenced [20, Ch. 2], but that was likely an error because the relevant material
appears to be in [20, Ch. 3]
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Figure 2.2: (a) Graphical representation of the mode summation for a f xed range,
depth and frequency. This plot shows the complex pressure in the deep-water
waveguide in Fig. 2.6 at a range of 80 km and 100 Hz. Each line segment rep-
resents the contribution from a single mode number (labeled), beginning with
the frst modes at (0,07) and ending with the last mode about (2.75, —3.251).
The total complex acoustic pressure is primarily determined by modes 160 to
170. (b) A plot of the phase difference between terms of the modal summation:
7(krm — kp(m—1))/(27). The phase difference for modes 160 to 170 is approx-
imately —2, an integer, so those modes all have approximately the same phase
(direction in the complex plane) and dominant the mode sum.
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one corresponding to a particular value of N) along the curve of k, versus m.
Figure 2.2 (b) is a plot of r(ag%) /(2m) versus m for a deep-water waveguide at
80 km in range.

The concepts in the present subsection are illustrated in more detail, and with
more mathematical rigor in [20, Sec. 3.1.6], which also discusses how this inter-

pretation of the modal sum relates to ray theory.

2.3 The range-frequency waveguide invariant

Historical context and philosophical note

The Russian literature on ocean acoustics is noticeably different than the Western
(i.e., American and European) literature. Each group — Russian and Western —
has a slightly different way of thinking about ocean acoustics, and each way has its
own strengths and weaknesses.

One of the lessons learned from this thesis was that much can be gained by
drawing from the strengths of the two different ways of thinking about ocean acous-
tics, which complement each other very well. For this reason, this author often lists
several references for a single concept.

The waveguide invariant, the topic of this thesis, was discovered by a Rus-
sian acoustician named S.D. Chuprov in 1982 [18]. Because of the Cold War
between the United States and Russia, researchers in the United States (and pre-
sumably other Western countries) did not know about the waveguide invariant until
the 1990s.

Chuprov’s original paper on the waveguide invariant, Ref. [18], has been trans-
lated to English.> Chuprov’s paper [18] is extremely dense — covering much ma-
terial not even mentioned in this thesis — and requires a very deep understanding

of ocean acoustics.

2.3.1 Range-frequency striations

This thesis uses the term “waveguide invariant” to refer to the range-frequency

waveguide invariant. In other literature, “waveguide invariant” sometimes refers

This author obtained a copy from the library at the NATO Undersea Research Centre.

25



to a slightly more general concept that describes not only changes in range and
frequency, but also changes environmental parameters such as waveguide depth
([18], [34, Sec. 2.4.6)).

Sections 2.3.1 - 2.3.3 of this thesis draw heavily from [34, Sec. 2.4.6] and [11,
Sec. 6.7.2], both of which have excellent derivations and discussions of the waveg-
uide invariant. The derivation in this chapter attempts to complement those two
sources by presenting the concepts in a slightly different manner, and by explic-
itly showing many of the intermediate steps of the derivation. This section uses
normal modes to describe the waveguide invariant, but the waveguide invariant can
also be described using ray theory (see Appendix A.2). Also, Chapter 6 presents

some original research relating the waveguide invariant to wavenumber integration.

We start out with an empirical observation: A 2-d plot of acoustic intensity in
a waveguide as a function of range and frequency (I(r,w) = |p(r,w)|?) for fxed
source and receiver depths often contains striations. This plot is what one would
obtain if he or she plotted a spectrogram from an acoustic receiver being towed

directly away from a broadband acoustic source in a range independent waveguide.

I(r,w) versus r for a fxed w is the intermodal interference pattern discussed
in [33, Sec. 2.4.4-5], so the striations in I (7, w) are a result of how that intermodal
interference pattern changes with frequency. The striations in I(r,w) will be re-
ferred to as waveguide invariant striations, and can be observed under a wide range
of environmental conditions.

A simple example of these waveguide invariant striations is shown in Fig. 2.3 (a),
which shows the simulated acoustic intensity in a Pekeris waveguide (source at
zs = 40 m, receiver at z = 20 m, cwater = 1500 M/S, Cpottom = 1700 m/s,
Photiom = 1750 kg/m® — but all Pekeris waveguides will have similar striations).
More complicated examples are shown in Figures 2.4 (¢) and (d), which show the
waveguide invariant striations for two shallow-water waveguides with non-uniform
sound speed profles. Figure 2.5 shows striations from experimental data collected
in a shallow-water waveguide (see Ch. 3 for details). Figure 2.6 shows simulated
waveguide invariant striations for a deep-water waveguide with a Munk sound
speed profle. These striations from a deep-water waveguide are different look-

ing than those from shallow-water waveguides shown in Figs. 2.3 and 2.4, and will
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be discussed later.

These plots show that similar striation patterns appear in many different shallow-
water range-independent environments (with the deep-water waveguide having a
different pattern). In shallow water, the striation pattern is often not strongly af-
fected by the details of the sound speed prof le or the seaf oor properties: thus the
term waveguide invariant

The acoustic pressure in a range-independent waveguide can be written as [see
Eq. (2.1)]

tkrmT
e m

VErmr

keeping in mind that k,.,, and v,,,(z) depend on w. Note that although the pressure

p(r,w) Z¢m(zs)wm(z) (2.5)

depends on z, as well as r and w, the z dependence is not explicitly written on
the left-hand-side of Eq. (2.5) because the z dependence is not important for this

derivation. Def ne:

1
A = Um(25)Um(2) 7 (2.6)
rmT
The pressure can then be written as
p(r,w) o Z ApethrmT, (2.7)

A, is a slowly varying function of » and w compared to how quickly the exponen-
tial term in Eq. (2.5) varies with r and w, and so A,,’s dependence on r and w will

be ignored. A, can be thought of as the local amplitude in the (r, w) plane.

The scalar acoustic intensity is the pressure [Eq. 2.7] multiplied by its complex

conjugate, which can be written as >

3Assuming Ay, and A; are real. If A,,, and A; are complex, then the A,, A; in the result must be
replaced with |Am, A7 + A A}, |, which is approximately equal to A,, A; when the real parts of A,,
and A; are much larger than the imaginary parts.
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Figure 2.3: (a) Plot illustrating waveguide invariant striations in a simulated Pekeris
waveguide. The quantity plotted is acoustic intensity (dB with an arbitrary refer-
ence) versus range and frequency. The striations’ slopes (pointing toward the lower
left) are described by the waveguide invariant 5. (b) Same as (a), but overlaid with
lines corresponding to 5 = 1/2. (C) same as (b) but with lines corresponding to
B = 1. (d) same as (b) but with lines corresponding to 5 = 3/2. Note that the

striations are best described with 8 = 1.
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Figure 2.4: Plots illustrating the waveguide invariant for two different simulated
shallow-water waveguides, with the properties of one waveguide plotted in the left
column and the properties of the other waveguide in the right column. The top row
shows the sound speed prof les (including the seaf oor). The second row shows the
acoustic intensity (dB with an arbitrary reference) versus range at 350 Hz, with the
source at 37 m deep and the receiver at 10 m deep. The plots in the second row illus-
trate that two waveguides with similar (but not identical) sound speed prof les can
have dramatically different acoustic felds. The plots in the third row are acous-
tic intensity (dB with an arbitrary reference) versus range and frequency. Both
waveguides, despite their differing sound speed profles, contain similar-looking
striations, the slopes of which are described by the waveguide invariant 3.
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frequency illustrating waveguide invariant striations with experimental data from a
shallow-water waveguide.
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Figure 2.6: Similar to Fig. 2.4, but for a deep-water waveguide with a Munk sound
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is at 300 m deep and the receiver is 3100 m deep, so low order modes contribute
signif cantly to the total acoustic intensity. Note that the striation pattern looks
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I(r,w) = |p(r,w)|? (2.8)
o (Z Ame”k””?") . (Z Aze‘“‘“”)
m l
= Z Z (A A cos(Akyyr)) (2.9)
m ]

= Z Ag + Z A Aj cos(Akpyr) (2.10)
q m,l; m#l

where m and [ are the mode number indices, Ak,,; = kym — Kk depends on w,
and the exponents have been written as cosines using Euler’s formula. Inspection
of Eq. (2.10) reveals that the acoustic intensity is a sum of cosines, each cosine
resulting from the interference between two modes and having the amplitude of the
product of those two modes’ amplitudes.

Def ne:
Iy(r,w) = A Apcos(Akpyr) (2.11)

so that I,,,;(r,w) is the contribution to the total intensity from a single cosine term.
A plot of a I,,,;(r,w) versus w and r, will contain striations, as shown in Fig. 2.7
for m =4 and [ = 10.

The slope of those striations can be determined by f nding the direction in the
(r,w) plane for which the intensity does not change. This is done by taking a f rst-
order two-dimensional Taylor series expansion of [,,;(r, w) about some point in the

(r,w) plane, and setting the result equal to zero:

Ol (r,w) P Ol (r,w)

5 0w =10 (2.12)

1]
Then the slope % (the direction in which I,,,;(r,w) does not change value) can be

5_"‘} . _8Iml(r>w) 8Iml(r>w)
or or ow

solved for:

. (2.13)

From the perspective of a person walking around on the bumpy surface of

I (r,w), Egs. (2.12) and (2.13) can be stated in words as: If [ am at a location

32



300
2807
260¢
240+

frequency (Hz)

2207

200 ‘
500 1000 1500

range (m)

Figure 2.7: A plot of a single cosine term of the acoustic intensity for the waveguide
shown in Fig. 2.4 (d), computed using modes 4 and 10.

(r,w) and I move in the r direction by some small amount dr, then how far must I

move in the w direction (dw) so that I,,,; has the same value as where I started? A

“striation” is a line or curve in the (r,w) plane for which I,,,; does not change.
Inserting Eq. (2.11) into Eq. (2.13) yields

ow _ ApA Ak () sin(Akpy(w)r)  (Aku(w)) 2.14)
or  rAn Ay (P sin( Ak (w) ), <8Akml(w)> -
Ow

We then def ne the waveguide invariant parameter for these two modes, 3,

as:

1 Akml (w)

w OAk (w) /0w
The reason for this def nition is not immediately obvious, but it turns out to be a
useful one. Using Eq. (2.15) and the right hand side of Eq. (2.14), one can write

Bt = (2.15)

ow

w
= B (2.16)
T T

So the slope ‘;—‘*’ of a striation of a single I,,;; term is (3, times the frequency w

T
divided by the range r.
But the acoustic intensity I(r,w) consists of a sum of [,,;; terms, and each
Bmi only describes striations in a single I,,,; term. If all of the I,,,; terms have

Bmi values that are approximately the same, then each term will have striations
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with approximately the same slopes, and so the total intensity /(r,w) will have
striations described by a scalar value (3 that is approximately independent of m and
l. Section 2.3.2 shows that in an ideal waveguide, 5,,; is approximately independent
of m, [, and w, for modes far from cut-off.

In more complicated waveguides, however, (3,,,; is not independent of m, [, and
w. In that case, a more sophisticated view of the waveguide invariant is required in
order to understand why there are striations in /(r,w) even though I(r,w) consists
of a sum of I,,; terms, each of which has a different 5,,; value (and thus different
striations slopes). This more sophisticated view is described in Sec. 2.3.3. But frst,
Sec. 2.3.2 shows that 3,,,; =~ 1 in an ideal waveguide.

Note that in Eq. 2.16, one can replace w (the temporal frequency in radians per
second) with f (the temporal frequency in cycles per second) because a factor of
27 will appear on both sides of the equation and will thus cancel out. Also note
that Eq. 2.16 is approximate because the dependence of A,, on r and w has been

ignored.

2.3.2 The waveguide invariant in ideal waveguides

Bmi can be calculated analytically in an ideal waveguide (pressure-release top and
bottom, iso-speed SSP). Following [11, Sec. 6.7.2], the horizontal wavenumbers

arc:
mm

K = k2—-(—3—>2 2.17)

where the total wavenumber k = %, and the vertical wavenumber of mode m is

“7-. Eq. (2.17) can be written as

[— 1—<%gf (2.18)

mm

By letting x = ( e )2, we can write Eq. (2.18) as
krm = kv1 —x (2.19)

If z < 1 (which means the vertical wavenumbers are much smaller than the total

wavenumber, or equivalently that the angle of propagation is close to horizontal),
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then we can Taylor series expand v/1 — x to

l—2z=1-2+0(?. (2.20)

T
2

Inserting « in Eq. (2.20) and ignoring O(z?) terms, we obtain

Ferm A (1 - % (%)2> 2.21)

where we used the approximate sign because we are ignoring all terms of O(z?) or

higher. Under that assumption (and replacing k with <),

Ky — ket & % (5) (2)2 (m? — 12) (2.22)

This can be inserted into Eq. (2.15) to reveal that 5 ~ 1 in this case, regardless
of the values of m, [, and w (bearing in mind that this is only valid for modes
with small vertical wavenumbers compared to their horizontal wavenumbers). An
alternative derivation expresses the same result in terms of the modal propagation
angles [18, Eq. 9] [34, Sec. 2.4.6].

Modes far from cut-off in a Pekeris waveguide have horizontal wavenumber
differences and frequency dependencies that are similar to modes in an ideal waveg-
uide. To see this, consider a plot of the characteristic equation for a Pekeris waveg-
uide [33, Eq. 2.167] versus horizontal wavenumber, and how that plot would change
with frequency. Because of this, modes far from cut-off in a Pekeris waveguide also
have 5, ~ 1.

Experimental and numerical observations suggest that 3,,,; =~ 1 in many shallow-
water waveguides, regardless of their sound speed prof les. Qualitative reasons for
this are suggested in [18]; Chapter 4 investigates this in more depth.

2.3.3 The waveguide invariant non-ideal waveguides

One way to understand the waveguide invariant in non-ideal waveguides is to ma-
nipulate Eq. (2.15) to def ne (,,; in terms of the group slowness and phase slowness
(the reciprocal of group speed and phase speed, respectively). Group and phase
speeds are discussed in [33, Sec. 2.4.4] and [10, Sec. 4.5] (with rather different
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points-of-view).

The phase speed for a mode m is

= 2.23
Um, . ( )
and the group speed is
Ow
= 2.24
Um i ( )
The phase slowness is
1
Spm = — (2.25)
Um
and the group slowness is
1
Sgm = —. (2.26)
U

Comparing those def nitions with the right-hand-side of Eq. (2.15), one can write:

ASp’ml (w)

(2.27)
where AS), i = Sp,m — Sp,1, and analogously for AS,, ,,,;. (The last several equa-
tions are contained in original waveguide invariant paper, Ref. [ 18], but the notation

and interpretation used in this thesis come from [34, Sec. 2.4.6] and [66].)

The meaning of Eq. (2.27) can be illustrated by a plot of S, versus S), for all
the 1 through M modes (at a f xed w), as is done by Ref. [18] and [34, Sec. 2.4.6].
This plot of S, versus S}, can be thought of as a functional relationship: S, as a
function of S, with both S, and S}, being parameterized by the mode number m.
This function will be denoted as S,(Sp). In fact, under the WKB approximation,
it can be shown that S, is a function of .S, independent of w, for modes that do
not interact with the seaf oor. This is mentioned in Ref. [18] and can be seen in
Eq. (4.36) of this thesis.

If we consider only regions of S, (.S,) where S, (.S,) is approximately a straight
line (mathematically speaking, take a frst order Taylor series expansion of S,(S))
about some fxed S, value), then 3 is def ned in terms of the slope of that line:

L ds,
B(Sp) — dSp

(2.28)
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Figure 2.8: The plots in the left column correspond to waveguide in the left column
in Fig. 2.4, and the plots in the right column correspond to waveguide in the right
column in Fig. 2.4. The top row is a plot of group speed versus phase speed at
350 Hz, with each dot corresponding to a mode. The bottom row is a plot of group
slowness versus phase slowness at 350 Hz. The slope of a line connecting points of
group slowness versus phase slowness is the reciprocal of the waveguide invariant.
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This B no longer has an m/l subscript because it depends only on the phase slowness
Sp in Sy(Sp), as opposed to depending on the phase slownesses of two distinct
modes as does Eq. (2.27). When calculated this way, 3 corresponds to two modes
with adjacent modes numbers. S may depend on w as well, as will be discussed in
Ch. 4.

It may seem strange (or even useless) to defne 5 using only adjacent modes,
given that the acoustic intensity contains components from all mode pairs, includ-
ing those with m and [ values that are not close to each other [see Eq. (2.9)];
each I,,,;(r,w) will have striations according to its (3,,;. However, as discussed in
Sec. 2.2.3, the acoustic feld at fxed range and frequency, is dominated by groups
of modes with adjacent mode numbers. That provides justif cation for def ning
using only modes with adjacent mode numbers [18]. This author is not aware of any
research attempting to quantify the validity of such a justif cation. But evidently,
Eq. (2.28) often provides an accurate description of range-frequency striations.

Figure 2.8 (a) and (c) shows plots of phase speed and group speed for the two
shallow-water waveguides discussed earlier in this chapter. All modes with phase
speeds less than 1520 m/s — the speed of sound at the top of the water column

— are non-SRBR mode. An analogous statement can be made for the phase slow-

k rm
w

nesses: all modes with S, = > =5~ ~ 6.57 s/m are non-SRBR modes. It
can be seen in Fig. 2.8 that the slope of the line connecting non-SRBR modes is sig-
nif cantly different than the slope of the line connecting the SRBR modes. Thus, the
non-SRBR modes and the SRBR modes each correspond to signif cantly different
values of 5. However, because there are many more SRBR modes than non-SRBR
modes in these cases, the striation pattern observed in I(r,w) corresponds mostly

to the value of 5 for the SRBR modes(8 ~ 1).

Figure 2.9 is the same as Fig. 2.8, but for the deep-water waveguide shown in
Fig. 2.6. In this case, a signif cant fraction of the modes are non-SRBR modes
(which in this case are modes with phase speeds less than about 1550 m/s). That
partially explains why the striations in Fig. 2.6 (c) do not look the same as those
in Fig. 2.9(¢c) and (f): non-SRBR modes tend to have different values of 3 than the
SRBR modes do.

Furthermore, the slope of the striations in Fig. 2.6 (¢) appear to vary depending

on the range and frequency, which makes sense given the argument in Sec. 2.2.3:
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different locations in Fig. 2.9 are dominated by different groups of modes, which
have different values of 5. This author is not aware of any research directly inves-
tigating how the value of 3 observed in the local striations in I(r,w) may change
with range and frequency (See Sec. 7.3 for a suggestion on how to investigate this).

In many cases, however, the range-frequency striation pattern is well described by a

single, dominant value of 5 that is approximately independent of range, frequency,

L w .
and mode numbers. In such cases, the striation slopes 3 can often be described
T

with the equation
ow

== 5% (2.29)
which does not include 3’s dependence on the mode numbers m and [/, and the
frequency w (or alternatively S, and w). Eq. (2.29) is a useful approximation in
many situations. However, as pointed out by Rouseff and Spindel in [51], it’s
important to keep in mind that Eq. (2.29) is an approximation, and that 3 is not
always equal to a single value.

Eq. (2.29) defnes the slope of a striation (assuming the striation is perfectly

well described by (), and can be integrated to yield the equation for the striation

path itself [21, Eq. 20]:
w = wp <i> (2.30)

o
where wy and 7y represent the constant of integration, and defne a point in the
(r,w) plane where the striation will go through. When the source and/or receiver
are moving, the r and w in Eq. (2.30) can be parameterized by time, as shown in
[21, Eq. 20] by D’Spain et al.

2.4 Chapter summary

The total acoustic intensity is a summation of cosine terms, each representing the
contribution from a pair of modes denoted by m and /. Each cosine term — each
mode pair — has its own [3,,,;; value that may depend on w. The total intensity is

the addition of all those cosine terms.

Under some circumstances, the total acoustic pressure and thus the total acous-
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tic intensity is dominated by mode pairs that all have similar values of (,,;. This
leads to the approximation that 3 is a scalar parameter.

Understanding that the acoustic intensity is a summation of cosines, each of
which has different (but possibly similar) j,,; value, is useful for understanding
plots of I(r,w). This understanding may also be useful for applying the waveguide
invariant concept to other situations such as array processing, time-reversal mirrors,

etc.

This chapter reviewed the background material necessary for understanding the
original work presented in the rest of this thesis, all of which uses 5 described by
normal modes in a range-independent waveguide. However, much more research
has been done on the waveguide invariant, including relationships to ray theory and
extensions to range- and azimuthally-dependent waveguides. Appendix A is a brief

but thorough review of the waveguide invariant literature.
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Chapter 3

Robust passive range estimation
using the waveguide invariant

The previous chapter explained that the waveguide invariant, 3, describes range-
frequency striations. In this chapter, original work is presented that utilizes range-
frequency striations to estimate the range to an acoustic source by assuming that
B = 1.! Because this chapter presents experimental data that has 5 ~ 1, this
chapter also serves as a motivation for Ch. 4 which investigates why 5 ~ 1 in most
shallow-water waveguides.

As with the rest of this thesis, mode numbers are denoted by m and /. In
contrast to the rest of the thesis, this chapter writes the temporal frequency as f

(cycles/s) instead of w (radians/s): w = 27 f.

3.1 Introduction

Most research on acoustic source localization in the ocean has focused on using co-
herent signal processing techniques such as Matched Field Processing [3] (MFP).
While MFP works well in theory and in numerical simulation, it is often not ap-

plicable to real-world situations because it requires very accurate knowledge of the

'This chapter is based on “Robust passive range estimation using the waveguide invariant” by
Kevin L. Cockrell and Henrik Schmidt [The Journal of the Acoustical Society of Ameridday,
2010].
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environment (e.g., sound speed prof le and acoustic properties of the sea f oor) in
order to correctly localize the source.

Other source localization methods have been developed that require much less
a priori knowledge about the environment by using the waveguide invariant. The
waveguide invariant has been applied to estimating the range to acoustic sources in

various circumstances using a variety of signal processing schemes such as:

e Estimating the range to a f xed acoustic source from measurements taken by

a vertical hydrophone array by analyzing the MFP sidelobe behavior [59].

e Estimating the closest-point-of-approach of a moving source to a single f xed
hydrophone using a Hough transform-like technique [56].

e Estimating source trajectories based on range-frequency striations in an ar-

ray’s beamformed output [62].

In this chapter, a technique is developed to estimate the range to a f xed acoustic
source from the acoustic intensity as measured over a window of ranges and fre-
quencies, I(r, f). The technique is tested on experimental data that was obtained
from an acoustic receiver towed by an Autonomous Underwater Vehicle (AUV)
heading directly toward the acoustic source. Previous research papers have used
the two-dimensional discrete Fourier transform (2D-DFT) of I(r, f) to estimate
the value of the waveguide invariant when the source range was known [51, 66],
but did not address how to choose the signal processing parameters. This chapter
extends that research to using the 2D-DFT of I(r, f) to perform range estimation,
and develops guidelines for choosing the signal processing parameters’ values.

The objective of the present work is to investigate the issues related to the signal
processing that is required for range estimation using the 2D-DFT of I(r, f) in the
context of performing the estimation autonomously (i.e., without requiring human
interpretation of any images), and to perform the range estimation on simulated and

experimental data. The main results are:

e The minimum bandwidth of the acoustic source and minimum range win-
dow of acoustic intensity measurements required for accurate range estima-
tion can be determined from a modest knowledge of the acoustic waveguide

parameters before any acoustic measurements are made.

44



e A relationship between the signal processing parameters and the ocean-acoustic
waveguide parameters can be used to reject much of the noise present in ex-

perimental data.

e Range estimation can be performed robustly, requiring very little a priori

environmental knowledge (at least, for the data sets analyzed this chapter).

e A range estimate accuracy of approximately 25% is achieved with the exper-

imental data set used in this chapter.

Section 3.2 discusses the waveguide invariant in the context of passive range
estimation. In Sec. 3.3, the range estimation algorithm based on a 2D-DFT is dis-
cussed. Section 3.4 applies the algorithm to simulated and experimental data. And

fnally, Sec. 3.5 gives a summary and conclusion of this chapter.

3.2 Brief review of range-frequency striations

Section 2.3 explained that a plot of acoustic intensity versus range and frequency
due to a broadband source in a waveguide, I(r, f), will exhibit striations that are
described by the waveguide invariant 3. As discussed in Sec. 2.3 the value of [ is
unique for each mode pair, but 5 can sometimes be approximated as being a single
value independent of the mode numbers m and [, and the frequency w. Under that
approximation, specif ¢ value of 3 that will be observed in I(r,w) depends on the
sound speed prof le, the seaf oor properties, and the source and receiver locations
[51, 21,49, 59].

Empirical and numerical observations suggest that for mode pairs where both
modes are surface-ref ecting bottom-ref ection (SRBR) modes, 5 ~ 1 (this is inves-
tigated further Ch. 4). So if the acoustic intensity is dominated by SRBR modes,
the B observed in the striation pattern will likely be close to 1. Throughout this
chapter, for both the simulated and experimental data, we assume 5 = 1. The
consequences of assuming 5 = 1 are discussed shortly.

Eq. (2.29) can be used for range estimation by rewriting it as

r:ﬁ-f-g—;, 3.1)
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which allows for one to estimate the range of the acoustic source if one measures
the slopes of the striations and assumes a value of 5. The effect of assuming an
incorrect value of 5 can been seen in Eq. (3.1). If the true value of 3 is SByye and
the assumed value is Sissumed, then the range estimates will be incorrect by a factor
of Bassumed / Birue-

In order to estimate the range to the source, one begins by calculating I(r, f)
for some range of values of  and f. In a simulation one can calculate I(r, f) in the
frequency domain using acoustic simulation software. In an experiment one must
estimate the power spectrum of a hydrophone’s time series at several ranges. In
practice, I(r, f) will likely be the spectrogram of a time series of acoustic pressure
obtained by moving acoustic an receiver radially towards or away from the acoustic
source, as is done in Sec. 3.4.2.

To estimate the source’s location, one then must determine the slopes of the
striations (or curved paths of the striations, if 5 # 1) in I(r, f). Because of the
visually striking relationship between the striation slope and the source’s location,
a person looking at I(r, f) can estimate the source’s location rather easily (see
Fig. 2.3. However, the present work focuses on techniques that perform the range
estimation autonomously (i.e., without the beneft of having a person to visually
interpret I(r, f) or its 2D-DFT).

3.3 Using the two-dimensional discrete Fourier transform
for range estimation

3.3.1 Outline of the 2D-DFT technique

The slope of the striation, %, at a particular range-frequency combination (7, f)

can be inserted into Eq. (3.1) to estimate the range to the source. The technique
described in this section to determine the slope of a striation in I(r, f) looks at a
small local region (a “window”) of I(r, f) and assumes that all of the striations
within that window have the same slope. This is similar to what is done in [4, 51,
66], but in those papers the ranges were much larger than the ranges used in the
present analysis, so the slopes of the striations did not change quickly with range.

Consequently, those papers did not focus much attention on how to choose the size
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of the window. Because of the short ranges used in the present analysis, the slopes
change quickly with range and so much care must be given to the choosing the
window size in order to ensure that the slopes do not change too much inside of the
window. This issue is discussed in Sec. 3.3.2.

In addition to the striations from the source, I(r, f) will also contain noise
which can be partially eliminated by f ltering. The spatial cutoff frequencies of the
f Iter are discussed in Sec. 3.3.2.

The range is then estimated based on the slope of the striations in the window.
This process is repeated for several windows located on a grid in the (r, f) plane.
Each window on the grid will produce one range estimate, all of which can then be
averaged obtain a single, robust estimate. Note that the vertical axis of the window
is frequency, so it requires that the source be broadband. The horizontal axis of the
window is range, and so it requires that the acoustic feld is measured along a line

emanating radially from the acoustic source.

3.3.2 Determining local striation angle with the 2D-DFT

Denote a rectangular window of I(r, f) bounded by (rmin < 7 < 7rmax) and
(fmin < f < fmax) 8 Iwin(r, f). The striations inside of Iy, (r, f) will all have
approximately the same slope if the window size is suff ciently small.

Several articles have pointed out the relationship between the 2D-DFT of Iy, (7, f)
and the slope of the striations in Iyiy (7, f) [66, 4, 51, 18]. That relationship forms
the basis for the approach used in the present work to determine the local striation

angle. The process of determining the local striation angle involves f ve main steps:
1. Take a two-dimensional discrete Fourier transform (2D-DFT) of Lyn (7, f)

2. Eliminate regions of the 2D-DFT of Iy, (7, f) associated exclusively with

noise content.
3. Convert the 2D-DFT of Iy, (7, f) to polar coordinates.

4. For several hypothesized striation angles, add up (integrate) all of the com-
ponents of the 2D-DFT of I, (r, f) corresponding to that striation angle.

5. The striation angle that has the most “energy” is then the estimate.
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These steps are illustrated in Fig. 3.1 and are described in detail in the follow-
ing subsections. The steps are related to the Radon Transform and the Fourier-
Slice Theorem [35]. If one were to skip the 2nd step, then the steps could be per-
formed with a Radon Transform using the Fourier-Slice Theorem. 2> But because
step 2 eliminates components of Iy, (7, f) above particular spatial frequencies, the
present analysis works directly with the 2D-DFT of Iy (7, f).

Interpretation of the two-dimensional discrete Fourier transform

Lyin(7, f) has striations whose slope needs to be determined in order to estimate
the source’s range. Fig. 3.1(a) shows an example Iy, (7, f). Denote the magnitude
Of the 2D—DFT Of ,[Win(r7 f) as [ZDF(knimage, k'ﬁimage):

Izp}:(/ﬁmmage, kf,image) = ‘//Iwin(r, f)6_j27T(kr-,image7‘+kf,imagef) dr df

where k;image and &y image do Not refer to the acousticwavenumbers, but rather
to the wavenumbers of the “image” I, (7, f). Hence, k;image and kj image Will
be referred to as the image wavenumbers. They are the horizontal and vertical
axis, respectively, of Fig. 3.1(b). In Sec. 3.3.2 the relationship between k. jmage and
k fimage and the acoustic horizontal wavenumbers of the modes propagating in the
waveguide will be derived.

In practice one has a discrete (sampled) version of I(r, f), so the two-dimensional
Fourier transform is implemented as a two-dimensional discrete Fourier transform.
The direction of the mainlobe originating from the origin of Irpr(kr image; & f,image)
is perpendicular to the slope of the striations in the window of I(r, f). An exam-
ple is shown in Figs. 3.1(a) and 3.1(b). (They do not appear exactly perpendicular
because of the different aspect ratios of the f gures.)

If one thinks of Iy, (7, f) as an image, ignorant of the fact that it represents
power spectrum of an acoustic feld, then its 2D-DFT, IZDF(kr,imagey K f image ), can
be interpreted as a decomposition of Iy, (7, f) into “cosine” image basis functions,

each with a unique image wavenumber [7, 12].

The author thanks an anonymous reviewer for The Journal of the Acoustical Society of America
for pointing this out.
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The acoustician may gain insight by noting that the basis functions of a 2D-
DFT of an image look like two-dimensional plane waves with the time-dependence
removed: exp (i(kyx + kyy)).

Each pixel of Irpr (k7 image; & f,image) represents a single basis function with im-
age wavenumbers of k. image and £ f jmage (horizontal and vertical image wavenum-
bers, respectively, in Fig. 3.1(a)). One may fnd this easier to understand if she or
he ignores that r and f represent range and frequency, and instead thinks of them
simply as labels for the  and y axes of Fig. 3.1(a).

To relate ky jmage and k7 jmage to striation angles, one can interpret each combi-
nation of k. jmage and k ¢ image (0r €ach pixel of Fig. 3.1(b)) as representing a cosine

basis function at a particular angle with a particular period (striation width).

Application of the 2D-DFT to determine striation angle

The waveguide invariant as shown in Eq. (2.29) makes a statement only about the
slopes of the striations; it says nothing about the distance between the striations.
From an image processing perspective, the waveguide invariant makes a statement
about the angle of the basis functions comprising Iy, (7, f); it says nothing about
the period (striation width) of those image basis functions. But as Chuprov points
out in his original derivation of the waveguide invariant, one can calculate the mini-
mum striation width using only modest information about the waveguide [18]. This
allows one to flter out noise by only including components of I(r, f) with image
wavenumbers less than the maximum expected due to the acoustic source of inter-
est, as will be discussed in Sec. 3.3.2.

To determine the angle of the striations in Iy, (7, f) we frst remove the mean
of Iyin(r, f) and then take its 2D-DFT to obtain Irp(kr image: K f,image). Then we

transform IZDF(kr,imagey K f image) from Cartesian coordinates to polar coordinates:

I2DF(kr,image> kf,image) = I2DF(97 K) (32)

where

6 = arctan(k f, 1mage/ ki 1mage K = \/ kr Jimage +k f image*

Note that it is legitimate to add k; jmage and ks image together because they are di-

mensionless, as they are the result of the 2D-DFT. However throughout most of the
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present work k. image and k7 jmage are “re-dimensionalized” based on the sampling
used in the 2D-DFT, just as is typically done with power spectra based on discretely
sampled temporal waveforms.

Nearest-neighbor interpolation is used to do the coordinate transform. An ex-
ample Irpg(6, K), is shown in Fig. 3.1(c).

If one places bounds on the possible ranges to the acoustic source, one can use
Eq. (2.29) to put bounds on the angles that could have striations due to the waveg-
uide invariant. The present analysis assumes the source was between 100 meters
and 5,000 meters. Typically this only eliminates a few degrees (e.g., angles of 3
to 87 degrees, instead of 0 to 90 degrees), but the striation angle f nding algorithm
benef'ts from this because it occasionally incorrectly chooses very steep or very

shallow angles as the dominant striation angle.

maximum frequency in window
Omin = arctan

minimum range to search

minimum frequency in window
Omax = arctan

maximum range to search

Interpolation isn’t strictly necessary to obtain the value of Ipp(f, K) at an
arbitrary (0, ). One can evaluate the 2D-DFT of a sampled version of I(r, f) at
arbitrary K, jmage and k1 image Values, analogous to a discrete timeFourier transform
for a discrete time series. However, doing this is computationally intensive because
one cannot utilize the Fast Fourier Transform algorithm, and the present analysis
did not suggest a noticeable increase in striation-angle f nding performance when
doing this to avoid interpolation.

Lpr(0, K) is then integrated along the K direction (the y-axis in Fig. 3.1(c))
to add up all the components of the image with a particular striation angle (remem-
bering that Ipp(#, K) will already have been spatially fltered to eliminate high

frequency noise).

E(0) = / Lpr(0, K)dK (3.3)

E(0) approximately represents the amount of energy (in an image processing
sense, not in an acoustic sense) in Jopr (Kr image, K f,image) Of striations at a particular
angle in I(r, f). A plot of an E(6) is shown in Fig. 3.1(d). In this chapter, we
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assume = 1 and use E(f) to estimate the range. However, other researchers
have modeled (3 as a distribution (see Sec. 2.3.3) and used E(6) to estimate that
distribution [51].

Note that a proper change of variables would give an extra factor of K on the
right hand side of Eq. 3.3, as noted in [51]. Because the present analysis does not
have that extra factor of K, lower values of K are weighted more heavily. The
precise meaning of this can be seen by looking at the mapping between pixels in
Fig. 3.1(b) and Fig. 3.1(c). This was done because it led to better estimates of the
striation angle.

Finally, the angle corresponding to the maximum value of E(6) is the most
dominant angle in the basis functions comprising Iy, (7, f). The angle of the stri-
ations is perpendicular to the angle of the basis function:

Hstriation = arg énax E(H) + 7T/2 (3.4)

An Ipr (K images K f,image) Obtained from experimental data will have noise at
all values of K jmage and & image. However, the region of Ihpr(kr image; K f,image)
which is important for the slope estimation (the signal of interest) lies mostly at
lower values of k. image and K image. It was found that even at very high signal-
to-noise ratios, the noise can signif cantly deteriorate the slope estimate because
the maximum value of & jmage and &t image represented Iopr (kr image, K f,image) Can
be arbitrarily large depending on how fnely I(r, f) was sampled in range and fre-
quency. The effect of the noise can be reduced signif cantly by limiting the re-
gion of integration of Eq. (3.3) to (—Fkr image,max < Frimage < Krimage,max) and
0 < k fimage < Kfimage,max). 1he next section will demonstrate how to choose

kr,image,max and k f,image,max-
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Figure 3.1: The four steps used to determine the angle of the striations in Iy, (7, f).
Part (a) shows Iyin (7, f), a window of I(r, f). The two-dimensional Fourier trans-
form of Iyin (7, f) is then taken resulting in Iopg (k7 image, K7 image )» Shown in part (b)
(using the bounds described in Sec. 3.3.2). IZDF(kr,imagey k ¢ image) 1s then converted
into polar coordinates, Irpr(6, K), shown in part (¢). Ipr(6, K) is then integrated
along K to produce E(6), shown in part (d). The angle corresponding to the peak of
E(0) is then the estimated angle of the striation. White dotted lines corresponding
to the estimated striation angle are then plotted in part (a) for visual comparison.
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Upper Bounds onk; image @and k ¢ image

[18] showed that one can relate the environmental parameters of the waveguide to
the maximum rate at which I(r, f) can oscillate in r and in f. In this subsection,
we reproduce the results from [18] in the context of the problem at hand — source
range estimation in a shallow-water waveguide. Determining an upper bound on
the rate at which I(r, f) oscillates in r and in f is equivalent to determining an
upper bound on the k. image and k ¢ jmage due to the acoustic source of interest. Any
components of Iopr (K image, K ,image) above some k. image max aNd K f image, max Can
be regarded as noise because they cannot be due to the source of interest.

In order to exclude as much noise as is possible, the integration in Eq. (3.3) of
I 2DF(kr,image7 k ¢ image) Will be bounded by &/ image,max and & f image, max. An example
of this region is shown in Fig. 3.2. Note that applying these bounds on the is
approximately equivalent to low-pass f ltering the image.

According to Eq. (2.9), the acoustic intensity is a sum of cosines. Each cosine
term has an image wavenumber in the r direction of

kr,image,ml = W = Akml(f) (35)

and an image wavenumber in the f direction of

Ak 1O Ak ())
f,image,ml — af = af

(3.6)

(wWhere Ak, = kpm — kip).

An upper bound on k. image,mi in I(r, f) can be determined (to within the
approximations used when deriving the waveguide invariant) by calculating the
largest possible value of Ak, (f). All non-zero values in Ihpr(kr images k£ image)
with &, jmage image wavenumbers above the maximum value of Ak, (f) are likely
due to noise, and can be excluded from the integration in Eq. (3.3). For all ocean

acoustic waveguides, the horizontal wavenumbers are bounded by [10, Eq. 4.5.19]

|:27Tf 27Tf:|

bl
Cmax Cmin

(3.7)

where cpax and cpin are the respective minimum and maximum sound speeds that
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Figure 3.2: Ihpr(kr images K f,image) showing the full range of £, jmage and kfimage.
with white lines illustrating the bounds described in Sec. 3.3.2. This f gure illus-
trates why it is essential to limit the region of integration in Eq. (3.3). Even if
the noise outside the white lines is at a low level, it can dominate the integral in
Eq. (3.3) because of the large ratio of outer to inner areas separated by the white
lines. The inner area is what is shown in Fig. 3.1(b).
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occur in the environment. Thus

1 1

kr,image,max =2rf < - > . (3.8)
Cmin Cmax

To determine and upper bound on kf image,mi>, We use Eq. (3.6) and replace f

with w/(27), and note that ag—; is the reciprocal of the group speed of mode m.

The maximum and minimum group speeds are approximately bounded by fastest

and slowest media in the waveguide, so

Kt image,max = 27T ( 1_ — ! > . (3.9)
Cmin Cmax

These upper bounds are used to limit the region of integration in Eq. (3.3). Us-
ing Egs. (3.9) and (3.8), one can set the bounds loose enough to include almost all
ocean waveguides on Earth, but still reject much of the noise in Iopr (K7 image, K f,image ) -
The r in Eq. (3.9) should be set to the maximum range that one expects to see the
source. All results presented in this chapter used Egs. (3.8) and (3.9) with r = 5000
m, ¢; = 1500 m/s, and ¢y = 1800 m/s.

Choosing The Window Size

Lyin(7, f) is a rectangular window of I(r, f), bounded by (Tmin < 7 < Tmax) and
(fmin < f < fmax), inside of which the striation slope will be estimated using a
2D-DFT. The purpose of this subsubsection is to determine how one goes about

choosing the window size. Denote the window size by

Af = fmax — fmin (3.10)
AT = Pmax — Tmin (3.11)

To accurately determine the striation angle, the observation window of I(r, f)
must be large enough in 7 and f such that at least one full striation (from peak to
trough to peak) is contained within the window, in each direction (r and f). The
statement in the previous sentence can be quantif ed by noting that the frequency
resolution of the DFT for some variable z is Ak, = %, so if the DFT of a signal

is to distinguish the frequency of k, from the zero frequency, then one needs to
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observe at least Az = i—’r

In theory one could use the £ jmage,max derived Sec. 3.3.2 (originally derived
in [18]) to determine the minimum Ar. However, only one term of the sum in
Eq. (2.11) will lead to such a high value of k;jmage. SO using k;.image max Would
underestimate the minimum Ar that is required to estimate the striation slope in
practical situations. A better way to determine the minimum value of Ar is to use

the value of k;. jmage,m; averaged over m and [.

To do this, frst the approximate values of Ak,,;(f) for an ideal waveguide will
be calculated. Then the additional approximations required for non-ideal waveg-
uides will be discussed. For an ideal waveguide, the difference in horizontal wavenum-

bers of modes not near cutoff can be written as [Eq. (2.22)]

1

Nt = bn0) = 1D = 5 (557 ) (5) =0 G

Note that because the intensity is a sum of cosines and cos(Ak,,,;7) = cos(—Akyyr),
only the absolute value of Ak,,; is of interest. The average absolute value of the
wavenumber differences can be determined by calculating the average value of
|m? — I2]:

m=M =M
N 1 MY+ M3 — M2 - M
2 2\ — 2 2
(2 —=m?) = e 5_1 lg_l |1 —m*| = e (3.13)

where M is the number of propagating modes. The computer algebra system Math-
ematicawas used to determine the formula for the sum. For M > 1,

(2 —m?2) ~ %MZ (3.14)

For an ideal waveguide, Eq. (3.14) can be inserted into Eq. (3.12) to determine the
approximate average horizontal wavenumber difference, and thus the average value

of the image wavenumber ;. jmage.

For non-ideal waveguides, this analysis assumes that the horizontal wavenum-

ber differences are distributed similarly to that of an ideal waveguide, but are
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bounded by the maximum and minimum £ in the media:

1 1\ 2—m?
A =2 - _ .1
) =207 (= ) S 615
The mean horizontal wavenumber difference is then
1 1 1
kr,image,ml(f) = Akml(f) = 27Tf <C - c ) § (316)

Conveniently, this does not depend on M.

For the average value of kfimage, We use a similar argument. Begining with
Egs. (3.6) and (3.12):

_ O (Aku(f S — M?
kf,image,ml =r ( afl( )) = <42§7;2> (m2 - 12) = <%> T (3.17)

One can then insert M for an ideal waveguide.

For non-ideal waveguides, this analysis assumes that the derivative of the hor-
izontal wavenumbers with respect to f are distributed similarly to that of an ideal
waveguide (or equivalently, the group slownesses are distributed similarly to that
of an ideal waveguide), bounded by the minimum and maximum group slownesses.

In that case, the mean k¢ image,mi is

k image,mi = 27T (lem — Cn;) % (3.18)

Egs. (3.16) and (3.18) can be used to ensure that the window will contain one
full striation of the averagestriation width. A larger window size could be used
and could potentially lead to a more accurate striation slope estimate because the
resolution of the 2D-DFT is inversely proportional to the window size. But because
the slopes of the striations contained in I(r, f) change with r and f according to
Eq. (2.29), the window size should not be too large or it will contain striations with
a wide range of slopes.

We now discuss how to choose the window size, given the trade-offs mentioned
in the previous paragraph.

Lyin(r, f) will contain striation slopes ranging from % to % One way to
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choose the window size would be to make the range of striation slopes in the win-
dow equal the range of striation slopes represented by the 2D-DFT bin. According
to Eq. (2.29), a window of size Ar by Af centered at r and f with have slopes

ranging from
[+DF/2 -2

r—Ar/2 r+ Ar/2 (3.19)

A striation’s slope is perpendicular to the angle (in r, f space) of its cosine basis
function, so an image wavenumber of k7. jmage and & ¢ image represents a striation with
a slope of —k; image /k fimage- Thus, an image wavenumber frequency bin of size
Aky image by AKfimage located at ;. image and kg jmage Tepresents striations ranging

from

kr,image + Akr,image/2 to  — kr,image - Akr,image/z
kf,image - Akf,image/2 kf,image + Akf,image/2

(3.20)

To make the range of striation slopes in the window equal the range of striation
slopes represented by the 2D-DFT bin, one could in principle substitute k;. jmage =
% and k¢ jmage = 2—7} into Egs. (3.19) and (3.20), and then set the ranges of slopes
equal to each other. The solution would depend on k. jmage and & ¢ jmage, for which
one could use the average values derived in this section. The solution would also
depend on r, for which one could choose some value in the middle of the search
range. An exact analytic solution can be obtained and would ensure that the range
of slopes represented by the 2D-DFT bin would equal the range of slopes in the
window. However, doing so will only provide a relationship between Ar and Af,
not values for both quantities, because there are an inf nite number of combinations
of Ar and A f that could satisfy the equality.

A less quantitatively rigorous, but more pragmatic approach is used in the
present work to determine the value of Ar and Af. We start with the heuristic
that the window should be roughly three times the average striation width that we
expect to see in each direction. This heuristic is motived by a desire for the 2D-
DFT bin representing the average image wavenumber expected to be a few 2D-DFT
bin-widths away from both axes in Fig. 3.1(b). Thus we desire:

kf,image,ml kr,image,ml (f)
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The 7 in Eq. (3.18) should be set towards the lower end of the ranges over which
one is searching for the source.

In the present work, A f was determined by using Egs. (3.21) and (3.18) with
c1 = 1500 m/s, co = 1800 m/s, » = 1000 meters, resulting in Af ~ 81 Hz.
Ar was determined by using Egs. (3.21) and (3.16) with ¢; = 1500 m/s, co =
1800 m/s, and f = 525 Hz (the middle of the frequency range of the data presented
in the next section), resulting in Ar ~ 154 meters.

The parameter values determined in this section — Ky max, Krmax, Af and Ar
— are used to process the simulated and both experimental data sets in this chapter.
The parameter values were not “f ne tuned” for each data set, illustrating the ro-
bustness of the method to the choice of the parameters. In fact, it was observed that
all of the parameters can be adjusted by roughly a factor of 2 (increase or decrease)
without drastically affecting the results for the data sets analyzed in the present
chapter.

Equations (3.16), (3.18) and (3.21) provide practical estimates of the minimum
source bandwidth and minimum horizontal aperture required for range estimation.
These estimates are shown to be accurate with experimental data in Sec. 3.4.2.
However, it is important to keep in mind that Egs. (3.16), (3.18) and (3.21) were de-
rived for range independent waveguides. Under some circumstances (e.g., a rough
sea surface, or a source with a high temporal frequency f), effects such as incoher-
ent scattering will smear out the high image-wavenumber striations, and a window
larger than that predicted by Eq. (3.21) will be necessary to estimate a striation’s
slope. (See Sec. 7.3 for specif ¢ suggestions for future research)

3.4 Results

3.4.1 2D-DFT technique applied to simulated data

In this subsection, the striation angle fnding technique based on the 2D-DFT is
tested on the simulated acoustic intensity shown in Fig. 3.3, which is from the
same Pekeris waveguide used to produce Fig. 2.3. After f nding the striation angle,
Eq. (3.1) is used to estimated the range to the acoustic source, assuming 3 = 1.
First, I(r, f) is divided into several windowed segments, Iyi,(r, f), spread on

a grid throughout the (r, f) plane. The striation angle is then estimated in each
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Figure 3.3: Acoustic intensity (dB, arbitrary reference) in a Pekeris waveguide
plotted versus range and frequency, I(r, f), for a receiver depth of 20 meters and a
source depth of 40 meters.
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Lyin(r, f) using the technique described in the previous section.

The resulting slope estimates are shown in Fig. 3.4(a). Each slope estimate is
associated with a range estimate, which are shown in Fig. 3.4(b).

In order to use all of the data, one needs to ensure that every pixel in Fig. 3.3 is
contained inside at least one window. In fact, one can let the windows overlap. In
the present analysis, the windows overlapped by about 50% in both the r and the f
directions.

One can average each column of Fig. 3.4(b) to obtain more accurate range
estimates. The result of such averaging, plotted versus the true range to the source,
is shown in Fig. 3.4(c).

The estimates are biased by about 10%. This is most likely do to the fact that the
derivation of the waveguide invariant does not take into account the % cylindrical
spreading, which will cause the actual slopes to be steeper than that predicted by
the waveguide invariant. However it could also be due to the other approximations
made when the waveguide invariant, such as the dependence of the mode shapes on
frequency. Because this error is less than the expected range estimate accuracy for

experimental data, it will not be addressed further in the present analysis.

3.4.2 2D-DFT technique applied to experimental data

The experimental data presented in this chapter was collected during GLINTOS, an
experiment performed during the summer of 2008 near Pianosa Island, Italy. Two
sound speed prof les measured about an hour before and an hour after the acoustic
data were collected are shown in Fig. 3.5(a), but note that this information was not
used by the range estimation algorithm.

An acoustic source was lowered 40 m below the ocean surface from the R/V
Leonardo, which was using dynamic positioning to keep its position as fxed as
possible. Due to a malfunctioning GPS unit, the acoustic source’s position had an
uncertainty of 100 m. The signal projected from the source was pseudo-random
white noise with a with an approximately f at spectrum from 300 to 750 Hz and a
frequency-integrated source level of 150dB re: 1 uPa at 1 m. Due to equipment
limitations, the signal was a single 65000 point realization of white noise that was
repeated back-to-back every 5.33 seconds.

An acoustic receiver was towed directly toward the acoustic source from a range
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Figure 3.4: Range estimates for a simulated Pekeris waveguide. (@) Same as
Fig. 3.3, but with the estimated slopes superimposed as white solid lines. (b) Range
estimates based on each slope in part (a) plotted versus the true range. (C) Range
estimates versus true range, obtained by averaging each column of part (b). The
bias is discussed Sec. 3.4.1.
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Figure 3.5: (@) Sound speed profles taken before and after the acoustic data col-
lection. (b) Sound speed at the hydrophone’s depth plotted versus range along the
track. (C) Water column depth (solid line) and hydrophone depth (dashed line)
plotted versus range from the source along the hydrophone’s path.
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of 2,200 meters to about 500 meters at a speed of 1.5m/s and at a depth of 30
meters. This segment of the experiment is referred to as the incoming segment.
The acoustic receiver was then lowered to 50 meters, and towed away from the
source at 1.5m/s back out to a range of 2,200 meters. This segment is referred to
as the outgoing segment. The acoustic receiver was moving continuously, so the all
of the presented data was collected in less than 1 hour. There was a small Doppler
shift of about 1% due to receiver motion. Such a shift may cause range estimate
errors of about 1%, which is negligible compared to the overall expected accuracy
and thus will be ignored. The acoustic receiver location had an uncertainty of 50
meters.

The acoustic data were sampled at a frequency of 4 kHz. The window length
used to estimate the spectrum of the received signal had to be 21,334 points long so
that it corresponded to the 5.33 second repetition rate of the signal. Under other cir-
cumstances, one would be free to choose other window lengths that do not strongly
depend upon the signal characteristics. Because the acoustic receiver was moving
at an approximately 1.5m/s, each spectrum (each column of Fig. 3.6) represents
~ 5.33s x 1.5 m/s = 8 meters in distance that the acoustic receiver traveled. The
Blackman-Tukey method of spectrum estimation was used to estimate each spec-
trum (each column of Fig. 3.6). Because the acoustic receiver was towed at an
approximately constant rate, the spectrogram of the recorded time series is I(r, f).

Once the spectrogram, I(r, f), was calculated, the processing method was ex-
actly the same as that used for the simulated data. The same parameter values were

used.

Incoming segment

The water column depth, acoustic receiver’s depth and sound speed along the hy-
drophone’s path are plotted in Fig. 3.5(b) and (¢). The measured acoustic f eld from
0Hz to 2kHz is shown in Fig. 3.6. The results of the range estimation algorithm
are shown in the same format as the simulated results, in Figs. 3.7(b) and 3.7(c).
There is extremely good qualitative agreement between the angle determined
by the striation angle fnding algorithm and the striation angle as it appears to a
human observer, as can be seen in Fig. 3.7(a). At source ranges larger than 1000

meters, the estimated range tends to be less than the true range. This could be the
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result of any number of effects, including: 3-d propagation effects, range inhomo-
geneities, the temporal stationarity of the SSP while the f eld was being measured,
the approximations used when deriving the waveguide invariant. Sec. 3.4.3 shows

a simulated spectrogram for comparison.
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Figure 3.6: The acoustic intensity (dB, arbitrary reference) as measured by the
acoustic receiver for the incoming segment of the experiment. The striations are
clearly visible in the frequency range of the source, from 350 to 700 Hz.

Outgoing Segment

The watercolumn depth and sound speed along the hydrophone’s path were similar
to the incoming segment (see Fig. 3.5). The measured acoustic feld, from 0 to
2kHz is shown in Fig. 3.8. There is a loud interfering broadband acoustic source

during the portion of the spectrogram corresponding to a range of 1000 to 2000
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Figure 3.7: Range estimates for the incoming segment of the experiment. (a) A
zoom-in of Fig. 3.6 on the frequencies of interest, with the estimated slopes super-
imposed as solid white lines. (b) Range estimates based on each estimated slope
in part (a), plotted versus the true range. (C) Range estimates versus true ranges,
obtained by averaging each column of part (b).
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meters. As one can see in Fig. 3.9, this does effect the estimates, but not as much
as one might expect. The estimates are only adversely affected at ranges of 1400 to
1800 meters, when the striations in the spectrogram from the interferer are nearly
parallel to the striations that are expected from the experimental acoustic source.
If one did not know a priori that the acoustic receiver was moving away from the
acoustic source of interest, then the estimates may have been affected more ad-
versely because one would have had to search over the full 180 degrees. The range
estimates are accurate within a few hundred meters, excluding the estimates when

the true range was 1400 to 1800 meters.
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Figure 3.8: The acoustic intensity (dB, arbitrary reference) as measured by the
acoustic receiver along its track away from the source. Note the striations in the
frequencies of the acoustic source (350 to 700 Hz) and the interfering source present
during times corresponding to ranges from 1000 to 2000 meters.
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Figure 3.9: Range estimates for the outgoing segment of the experiment. (a) A
zoom-in of Fig. 3.8 on the frequencies of interest, with the estimated slopes super-
imposed as solid white lines. (b) Range estimates based on each estimated slope
in part (a), plotted versus the true range. (C) Range estimates versus true range,
obtained by averaging each column of part (b). Large errors occur when the inter-

fering source was present.

68



So far, the present chapter has dealt exclusively with the signal recorded from
a single hydrophone. However, data was collected from a 32-element horizontal
array of hydrophones. Chapter 5 discusses how to process the data from all the
hydrophones in order to reduce the noise in Fig. 3.8. The result of such fltering
can be seen in Fig. 5.4(b). One can then apply the passive ranging algorithm to
the array-fltered data in Fig. 5.4(b); the result is shown in Fig. 3.10. Note that
Figs. 3.8 and 3.10 are from the experimental data set; the difference is that Fig. 3.8
used data from a single hydrophone of the array whereas Fig. 3.10 used data all of
the hydrophones of the array.
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Figure 3.10: Range estimates for the outgoing segment of the experiment using
array-f Itered data. This f gure is similar to Fig. 3.9, but data from the 32-element
array has been used to remove the noise from sources besides the source of interest.
(@) A zoom-in of Fig. 5.4 on the frequencies of interest, with the estimated slopes
superimposed as solid white lines. (b) Range estimates based on each estimated
slope in part (a), plotted versus the true range. (C) Range estimates versus true
range, obtained by averaging each column of part (b).
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3.4.3 \Validity of 5 = 1 assumption

Section 3.2 discussed that although usually 5 ~ 1 in shallow water environments,
that may not always be the case (see Sec. 2.3.3 or [51]). Determining when one can
assume that 5 ~ 1 is still an active area of research, but some guidelines are given
in [51, 49], and other papers on the waveguide invariant. Chapter 4 presents some
original research on this topic.

All of the analysis in the present chapter assumed 5 = 1, so it is worthwhile
to simulate the acoustic feld in an environment similar to the environment where
the experimental data was collected, in order to determine if /5 differs signif cantly
from the assumed value. (We expect it not to, otherwise we wouldn’t have been
able to accurately estimate the range to the source in the previous section.)

To do this, the normal mode program Kraken [48] was used. The sound speed
prof le used was that collected during the experiment [shown in Fig. 3.5(a)]. The
source and receiver geometry were the same as the incoming portion of the exper-
iment. Because the bottom bathymetry and the sound speed profle changed very
little with range, the environment was modeled as being range independent. The
bottom properties were unknown so typical values for a bottom half-space were
used (Chottom = 1650 M8, photom = 1.5 g/em?, o = 0.5dB/\).

Figure 3.11 shows the simulated spectrogram. The white lines have slopes
corresponding to 8 = 1. It can be seen that there are some striations with slopes
that are slightly steeper than the 8 = 1 lines, but almost no striations have slopes
that are shallower than the 8 = 1 lines. This could explain why the ranges tended
to be underestimated in some parts of the incoming segment of the experiment
[Fig. 3.7(c)], and suggests that 5 may have a value slightly larger than one for this
particular environment and source-receiver geometry.

The fact that the range estimates from the experimental data in Figs. 3.7(c)
and 3.10(c) were between about 75% to 100% of the true range implies that /3
had a value between about 1 and 4/3 for the environment where the experimental
data was collected. Later in this thesis, a method is developed for calculating the
value of 5. Section 4.5.4 shows that 5 changes with horizontal wavenumber, and
that it has a value of slightly less than one for this particular environment (for
the SRBR modes). Thus there is a discrepancy between the predicted value of 3
being slightly less than one, and the measured value of 5 being slightly greater than

71



one ([49] and [32] also have experimental examples of 3 being slightly greater
than one). This discrepancy might be due to the non-SRBR modes which have
different /3 values, the 1/./7 spreading, or attenuation (imaginary components of
the horizontal wavenumbers). [51] provides some explanation for this discrepancy,

but there is certainly room for further research.
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Figure 3.11: A simulated spectrogram for the environment used to collect the ex-
perimental data. The white lines correspond to 5 = 1. Most of the striations
correspond to 5 ~ 1, with a few exceptions.

3.5 Chapter summary

A processing scheme based on the waveguide invariant and the 2D-DFT of I(r, f)
was used to estimate an acoustic source’s range using simulated data and two sets

of experimental data. The processing techniques used did not require human inter-
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pretation of any images in order to obtain the range estimate, making the techniques
suitable for implementation on an autonomous platform.

A relationship between the average image-wavenumbers in the 2D-DFT of
I(r, f) and the acoustic waveguide parameters was used to determine the mini-
mum observation window size of I(r, f) required for range estimation. A similar
relationship was used to reject noise in I(r, f).

The same set of signal processing parameter values (maximum image wavenum-
ber, and window size in range and frequency) was used for both simulated and ex-
perimental data, showing that the signal processing parameters’ values do not need
to be fne-tuned for each data set. The range estimates were based on the assump-
tion (approximation) that 3 is a single scalar value, and is equal to one. The range
estimates were accurate to within about 25% despite using only a minimal amount
of a priori knowledge about the environment. The technique appeared to be robust,
but more experimental data would be needed to determine the robustness of these

algorithms in other environmental conditions.
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Chapter 4

A WKB modal approach to
calculating the waveguide
Invariant

The previous chapter illustrated that the waveguide invariant is a powerful con-
cept for explaining range-frequency striations in experimental data. It is somewhat
surprising that the strong non-uniformities present in experimental SSP in the pre-
vious chapter did not have a large effect on the value of /3 observed in I(r, f). The
present chapter develops a method for calculating the waveguide invariant that il-
lustrates the relationship between the SSP and /3, which provides some insight into

why 3 &~ 1 in most shallow-water waveguides.!

In this chapter, m and [ refer to the mode numbers just as they did in previous
chapters. This chapter also uses n to refer to the mode number, but n is used only
when the mode number comes from the WKB approximation. The reason for this

distinction will become clear later.

'This chapter is based on “A modal Wentzel-Kramers-Brillouin approach to calculating the
waveguide invariant for non-ideal waveguides” by Kevin L. Cockrell and Henrik Schmidt [Under
review for publication in The Journal of the Acoustical Society of Ametica
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4.1 Introduction

In Chuprov’s original paper on the waveguide invariant, he def nes ( in two differ-
ent ways. The frst way uses normal modes to describe the acoustic feld, and the
second way uses ray theory to describe the acoustic feld [18]. In general, normal
modes is accurate under a wider range of circumstances than ray theory, however,
normal modes tends to be less amenable to non-numerical analysis than ray theory.

Previous research on the waveguide invariant using ray theoryhas used both
numerical techniques and analytic techniques [18, 24, 22], with the analytic tech-
niques providing some insight into how the SSP affects 5.

Previous research on the waveguide invariant using normal modeshas mostly
used numerical techniques to calculate 5 [18, 51, 21, 52], which has provided many
useful insights but is not conducive for understanding how the SSP affects 5.

This chapter investigates the waveguide invariant using a the WKB approxima-
tion to normal modes, which can be thought of as “half way” between full-feld
normal modes and geometric ray theory. The modal WKB description is accu-
rate under a wider range of circumstances than geometric ray theory but is more

amenable to (non-numerical) analysis than full-f eld normal modes.

5 can be def ned directly in terms of the normal modes’ horizontal wavenum-
bers, as is shown in Eq. (2.15). To make the dependence of 3 on the modes numbers

m and [ and the frequency w more explicit, we write Eq. (2.15) as:

B 1 k}«(ﬂ%w) - kr(l>w)
B(ma l,bd) - _; ’ O(kr(m,w)—kr(l,w))

Oow

(4.1)

where k,.(i,w) is the horizontal wavenumber of mode 7 at frequency w.

In Sec. 2.3.2 it was shown analytically that 5 ~ 1 for ideal waveguides. Ref-
erences [18] and [11] analytically show that 3 =~ —3 for surface-trapped modes in
waveguides with n2-linear sound speed prof les (SSP). As discussed in Sec. 2.3, ex-
perimental data and numerical simulations have shown that many realistic shallow-
water waveguides can be well approximated by an ideal waveguide for the purpose

of calculating 3 (i.e., 5 = 1 for many shallow-water waveguides). However, the
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analysis in Sec. 2.3 (originally from [18], [11, Sec. 6.7.2], and [34, Sec. 2.4.6])
does not lend itself to understanding why 5 is not strongly affected by the non-
uniformities present in a realistic SSPs, as opposed to the pressure f eld itself which
is strongly affected (two examples are shown in Fig. 2.4). In fact, the derivation in
Sec. 2.3.2 showing that 8 = 1 for an ideal waveguide only considers modes far
from cutoff (i.e., low-order modes at high frequency). Paradoxically, those are pre-
cisely the modes whose &, values will be most affected by the non-uniformities in
the SSP 2; those modes will “tuck” into the local sound speed minimums and will
not behave like modes in an ideal waveguide.

This chapter develops a method for calculating 3 based on the WKB approxi-
mation, which is an approximate method for solving for the horizontal wavenum-
bers in a waveguide. The relationship between the WKB approximation and (3 is
brief'y mentioned in the original waveguide invariant paper [18]. Later, Brown et
al. used the WKB approximation to show the relationship between between 5 and
the ray stability parameter « [14, 6]. The present chapter investigates how non-
uniformities in a SSP will affect 8. The resulting method is then applied to a few
canonical waveguides and compared with the values of S calculated numerically
from the normal mode program Kraken [48].

The main results are:

e If the WKB approximation is used, the derivatives required to calculate /3
can be performed implicitly, circumventing the need to obtain explicit so-
lutions for &, (m,w) and allowing for the inclusion of a fuid bottom halfs-
pace. The resulting estimate of (3 is then an explicit function of the horizontal

wavenumber instead of being an explicit function of the mode number.

e When the bottom halfspace is modeled as a vacuum, the value of 5 for all
horizontal wavenumbers and all frequencies is a function of a single param-

eter: the phase slowness S),.

e The value of 3 can be directly related to two one-dimensional curves: the
depth-integrated vertical wavenumber as a function of phase slowness and

the seaf oor refection coeff cient as a function of phase slowness. These

2Chuprov mentions this fact later in his paper when discussing the waveguide invariant in deep-
water waveguides.
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curves show that 3 for surface-ref ected bottom-ref ected (SRBR) modes is
not strongly affected by the details of the SSP, but that 5 for non-SRBR
modes is strongly affected by the details of the SSP.

e A qualitative argument suggests that 5 =~ 1 for SRBR modes in waveguides
where the seaf oor is modeled as a vacuum, regardless of the SSP. /3 can take
on a wide range of values for non-SRBR modes.

4.2 Calculating # using the WKB approximation

To calculate 3, the WKB approximation is used to determine the modal horizontal
wavenumbers. Details of the WKB approximation as it applied to calculating the
modal horizontal wavenumbers can be found in [11, Sec. 6.7], [33, Sec. 2.5], [5],
and [60, Sec. 2.9] (See Appendix B for even more references). All results in this
chapter apply only to propagating modes with no more than 2 turning points (depths
where k,(z,k,) = 0. see Sec. 2.2.2), and to waveguides with bottoms that are
either lossless homogeneous fuid halfspaces or vacuums. Because the quantity
of interest in the present analysis is the acoustic intensity, we note that the WKB
approximation is usually more accurate at calculating the acoustic intensity than
it is at calculating the complex acoustic feld. As discussed in [8, Sec. 48.5], this
is because the error of the WKB-approximated acoustic intensity depends on the
errors of the differences of the horizontal wavenumbers, as opposed to the error of
the WKB-approximated complex acoustic f eld which depends on the errors of the

value of the individual horizontal wavenumbers.

Under the WKB approximation, the horizontal wavenumbers are calculated by
solving for k, in the equation [5]

n = ¢(ky,w) + Adgn(kr, w) + Adyp(kr,w) + 1 (4.2)

78



where n is the mode number (1, 2, 3, ...),

(b(kraw) = %/22 kz(za kr) dz (4.3)

21

1 [* w \?
L) ) e 44

where z1 and z5 are either the sea surface (z = 0) and sea f oor (z = d) respectively,
or a z at which k,(z) = 0 (a turning point). And with:

if k. < k(0) (i.e., mode ref ects from surface)
A¢up(kra O.)) =

W= Nl

if k. > k(0) (i.e., mode has an upper turning point),
4.5)

¢y if ke < k(d) (i.e, mode ref ects from bottom)
Adgn(kr,w) =

—% if k, > k(d) (i.e., mode has a lower turning point),
(4.6)
where ¢p(k,,w) is % times the phase angle of the bottom half-space ref ection
coeff cient. (—1/2 < ¢p(k,,w) < 0) for a fuid bottom and ¢y, (k,,w) = —1/2 for
a vacuum bottom. Figure 4.1 discusses how to interpret Eq. (4.3) (See Fig. 2.1 for
a def nition of SRBR modes).
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(a) (b)

Be) = = Be) = =

Figure 4.1: Illustration of the WKB approximation applied to calculating the
horizontal wavenumbers k.. The shaded area is related to (but not equal to)
f k.(z, k) dz, which is used to determine the values of k, that correspond to propa-
gating modes. Subf gure (a) demonstrates that when &, is greater than the minimum
k(z) in the water column (which corresponds to non-SRBR modes), the shape of
[ k.(2, k) dz as a function of k, will depend strongly on the detailed shape of the
the SSP — especially the part of the SSP near k(z) = k,. Subf gure (b) demon-
strates that when k, is less than the minimum £(z) in the water column (which
corresponds to SRBR modes), the shape of f k.(z, k,)dz as a function of k, does
not depend strongly on the details of the SSP because the integral tends to average
out any “roughness” in the SSP. A similar argument can be made regarding the
dependence of [ k,(z)dz on w.

80



Eq. (2.15) can be manipulated to facilitate a geometric interpretation of 5 in
terms of the WKB approximation. The numerator and denominator of Eq. (2.15)
can be divided by an arbitrary value without affecting the value of the fraction.
Specif cally, one can divide the numerator and denominator by the difference in the
mode numbers (m — [) so that

Oow

A line connecting the points (k,.(m,w), m) and (k,(l,w), 1), as shown in Fig. 4.2
with m = 2 and [ = 4, has a slope of (m —1)/(k,(m,w) — k.(l,w)). This allows
one to interpret the numerator of Eq. (4.7) as the reciprocal of that slope.

() (b)

6
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c
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0.5 0.3 O.lél 0.5
r r

Figure 4.2: (a) A plot of n versus k. for an ideal waveguide using the WKB approx-
imation (f = 100 Hz, d = 50 m, ¢ = 1500 m/s). The two points plotted correspond
to modes 2 and 4. The reciprocal of the slope of the line connecting the two points
can be used to facilitate interpretation of the waveguide invariant 3, as described in
Sec. 4.2. (b) A plot of n versus k, for a waveguide with an n2-linear sound speed
profle and pressure-release boundary conditions (f = 100Hz, d = 50m, ¢(0) =
1400 m/s, ¢(d) = 1600 m/s). The discontinuity at k, = w/c(d) is due to the WKB
approximation (¢4, as def ned in Eq. (4.6)).

B(m,l,w) depends on how (k,(m,w) — k,(l,w)) depends on frequency. One

can visualize that dependence by plotting n as a function of &, and of w, as shown
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for an ideal waveguide in Fig. 4.3.
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Figure 4.3: A contour plot of n versus k, and w for an ideal waveguide (d = 50 m,
¢ = 1500 m/s). The solid black lines are contours at integer values of n, which
in the WKB approximation correspond to the normal modes’ horizontal wavenum-
bers.

B(m,l,w) can then be interpreted as: -1 divided by the slope of the line con-
necting the points (k,,w, m) and (k,,w, (), divided by how the reciprocal of that
slope changes with frequency. Or,

~_ 1/slope @.8)

<8(1/;Ql}0pe) ) »

where the m, ! subscript indicates that the m and [ values at which the points are

located must stay constant as w changes.

The discussion in the caption of Fig. 4.1 suggests that (k,(m,w) — k,(l,w))

and its dependence on frequency does not strongly depend on the details ¢(z) when
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|k (m,w) — k. (I,w)| < kmin and k,.(m, w) is not too close to kmyin, in some quali-
tative sense. So then one would expect that 5 would also not depend on the details
of the SSP under those circumstances in waveguides with a pressure-release bot-
toms. This is mentioned by Chuprov in [18, pp. 104].

4.2.1 Approximating a finite difference with a continuous derivative

The acoustic feld in a waveguide is typically dominated by a few groups of modes
with close mode numbers, for reasons discussed in Sec. 2.2.3. Because of that,
[ is often defned only in terms of adjacent modes (see Sec. 2.3.3). Because the
mode number n is a monotonic function of the horizontal wavenumber k., a group
of adjacent modes corresponds to a particular range of k, values. Here, we use
that relation to approximate a fnite difference in mode order with a continuous
derivative in n.

If the curve n(k,,w) is approximately linear in k, between the points (n, k,(n,w))
and (n + An, k.(n + An,w)), then the f nite difference between horizontal wavenum-
bers in Eq. (4.7) can be approximated by a continuous partial derivative:

(0t An,w) — kp(n,w))\ Ok (n,w)
im ) .

An—=0 An on (49
This is equivalent to the idea of expanding the group and phase slownesses around
an average value for modes with adjacent k,. values, as discussed in Sec. 2.3.3, [18],
and [11, Sec. 6.7.2]. Most of the present analysis applies only to mode pairs with
adjacent k, values, but Sec. 4.6 discusses how to calculate 5 for mode pairs that
have k, values that are far apart.

For adjacent modes, 5 can then be written in terms of partial derivatives:

Okr(n,w) Ok (n,w)

1 0 1 0
B ey = T 40
+ on ow
w

4.2.2 Implicit differentiation

Calculating the partial derivatives in Eq. (4.10) is straightforward if one has an ex-

plicit solution for &, as a function of n and w. But explicit solutions for &, (n,w) can
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only be obtained for a few cases such as modes in an ideal waveguide or surface-
trapped modes in an n2-linear waveguide.

Therefore, the present analysis calculates the partial derivatives in Eq. (4.10)
using implicit differentiation. Following the procedure for implicit differentiation
in [31, Sec. 7.2], write Eq. (4.2) as

n— (¢ + Apan + Adyp + 1) = 0. (4.11)
Then def ne a function:
f(knnvw) =n-—- (¢+A¢dn+A¢up+ 1) =0 (4-12)

which allows k,. to be def ned as an implicit function of n and w in regions where
the derivative 0 f /Ok, exists and is not equal to zero. The derivative 0 f /0k, exists
and is not equal to zero except at a fnite number of points, such as k, = k(0)
and k., = k(d), as described in Appendix 4.A. So for our purposes k, may be
considered an implicit function of n and w.

The frst step to calculate 8 using implicit differentiation is to determine the
frst order partial derivatives of k, with respect to n and with respect to w. These
can be obtained using [31, Eq. 17].

Ok, Of/0n

on  Of/ok, (+13)
ok, Of/0w

% = " 8f ok (4.14)

where 0f /Ox indicates the result of differentiating f with respect to the explic-
itly appearing variable x, holding all other explicitly appearing variables constant.
More specif cally, the partial derivatives with respect to k&, on the right hand sides
of Egs. (4.13) and (4.14) should treat k,. as if it were not a function of n or w. See
[31, Secs. 7.1-7.2] for details.

To obtain 9%k, /(0w On) for the numerator of Eq. (4.10), the partial derivative

of (%) needs to be taken with respect to w. This can be done as follows:
ok, .
1. Calculate o using Eq. (4.13).
n
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0 [0k,
2. Calculate % <%

treat k, as a function of w.

>, where the partial derivative with respect to w must

3. The result of step 2 will contain terms of the form £.(w). Those terms should

ok,
be replaced with D as calculated by Eq. (4.14).

The results can the be inserted into Eq. (4.10) obtain S.

As will be discussed in Sec.4.6, Eq. (4.14) can be used to determine the group
speed of a mode at a particular k.. However it cannot directly be used to obtain
a dispersion curve for a particular mode, so the utility of such a calculation is not

immediately apparent.

Example

As an example of how to use the method described in this section to calculate 3,
we will apply the method to an ideal waveguide with pressure-release boundaries
(depth d, sound speed c):

f(kr,n,w)=n— (%\/i—j—kﬁ). (4.15)

The application of Egs. (4.13) and (4.14) yield:

[w? 12
Ok _ u (4.16)

on d-k,
Ok, w
R = 25 4.17)
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Then we apply the steps to determine the mixed-partial derivative:

8<8kr> o [ m™/%—k(w)?

dw \on )

Ow d- ky(w)
mw (why(w) — Ky (w))

2

d -k (w)%y/ % — kp(w)?

Tw <w% — k:T)

= : (4.18)
d-c2k2\/9% — k2
Inserting Eq. (4.16) and Eq. (4.18) into Eq. (4.10) yields:
k2 k2
B = 2 = e (4.19)

For modes far from cut-off &, =~ k leading to S ~ 1, which matches the result
in Sec. 2.3.2. Note that the estimate of 3 is a function of k, instead of begin a
function of n because the differentiation was performed implicitly.

4.3 Exploiting dependence o

In the previous section it was shown that a mixedsecond-order partial derivative
of k, with respect to n and w was required to calculate § [Eq. (4.10)], implying
that 5 depended on two independent variables. In this section we show that under
certain circumstances, ¢, A¢g, and A¢,, depend on £, and w in such a way that
the mixed second-order partial derivative can be expressed as a non-mixed (regular)
second-order derivative, meaning that 3 depends only on one independent variable.
It should be noted that this result is not entirely new: In [18] Chuprov mentions
that under the WKB approximation, the functional dependence of the group speed
on the phase speed — a quantity that can be used to defne § — does not depend
on the frequency under certain circumstances.

We begin by noting that a plot of ¢(k,,w) will look like a scaled down version
of a plot of ¢(k,,w + Aw); both axes shrink uniformly. Furthermore, the shape of

Adgn = ¢p also scales with frequency, but the scaling only occurs on the w axis.
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This scaling suggests that the shape of ¢(k,,w) and ¢y (k,,w) at one frequency
as a function of &, provides suff cient information to take partial derivatives with
respect to either k, or w at any frequency. We now show that ¢(k,,w) can be
written as w - ¢(1, k, /w) and A¢gn(k,,w) can be written as Aggn (k. /w).

First, factor an w out of k,(2):

1 [* w \2
o (kp,w) = - /z1 <%> — k2 | dz
w [* 1 k, 2
- ;/21 ¢ R <z> 4
o)
=w- <%> (4.20)

AN 1 ke \ 2
‘“(z):%/n \/W_<U> dz. (+.21)

Note that (%) is the inverse of the phase speed, which is known as the phase

where

slowness S5),.

o

T

w

Sp

(4.22)

The remainder of this chapter will denote (’Z—T) by S, to simplify notation, but it is
important to keep in mind the .S, is a function of w when taking derivatives with

respect to w.

Next we show that ¢, the phase of the ref ection coeff cient between two-
homogeneous half-spaces, and thus ¢4, can be written as a function of S,. Fol-
lowing [33, Eq. 1.45 and Eq. 2.125],

Zy — 7y

Ref ection coeff cient = R =
Z1+ Zo

(4.23)
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where

PiCi
Zi = sin 6;
_ kpic
=

(w/ci)pici
V@) R
Pi

Ve — e fw)?

N . N— (4.24)

(1/¢;)? — 52

Then R can be written as a function of .S, and so can A¢gy.

To see that Ay, (and A¢gy in the case of a vacuum bottom) can be written as
function of S, note that the value of A¢yp(k,,w) as defned in Sec. 4.2 depends
only on the point at which k, = CL), or equivalently at S, = Tlo)'

Having written ¢, A¢yp, and Agg, as function of (k. /w), the waveguide in-
variant 5 can be calculated by writing Eq. (4.12) as

0= f(kr,n,w)

=n— <w -1 (%) + Addn (%) + Adyp <%> + 1> (4.25)

and then following the steps in Sec. 4.2.2 to calculate 8 from f(k,,n,w). The
resulting expressions are lengthy and diff cult to manipulate by hand, so the author
used the computer algebra system Mathematica See Appendix 4.B for details. The

f nal result can be simplif ed down to:

(woy (Sp) + A‘b:in (Sp))2

AW (Sp)? + WA (Sp) @ (Sp) +wdr (S,) (AL, (Sp) +we, (fi’)z)a)

where the / denotes a derivative with respect to the argument S, = ’Z—* Note that

ﬂ (Spvw) =

A¢), is related to the “ray displacement” discussed in [11, Sec. 4.4].
When S, > 1/c¢(d) (i.e, when the mode has a lower turning point) or if A¢gy

represents a vacuum bottom, then the derivative of A¢g, with respect to .S, is zero
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everywhere except possibly at one point, and Eq. (4.26) can be reduced to

o (Sp)”

B = =35y a5

(4.27)
This expression is remarkably simple given the complexity of its derivation, which
is shown in Appendix 4.B. When it’s valid, Eq. (4.27) provides an direct rela-
tionship between the SSP and the value of [ at all horizontal wavenumbers and
all frequencies though a single function of a single variable: ¢;(.S,). It should be
noted that Eq. 4.27 is equivalent to [14, Eq. 24].

4.4 Interpretation and implementation

Eq. (4.26) reveals that the shape of ¢ (S,) and ¢4n(Sp) provides suff cient infor-
mation to calculate the value of 5 for any k, and w. Eq. (4.27) reveals that when
Sp > 1/c(d) or when the bottom is approximated as being a vacuum, 3 depends

only the ratio of &, to w, as opposed to depending on each variable independently.

To relate the value of 3 to the SSP ¢(z) and S,, some properties of ¢;(.Sp,) will
now be discussed. Let cpin and cpax be the minimum and maximum sound speed
in the water column, not including the seaf oor. ¢;(.S,) can be broken up into two
regions, the frst being (0 < S, < 1/cmax) Which corresponds to SRBR modes (see
Sec. 2.2.2). And the second being (1/¢max < Sp < 1/¢min) Which corresponds to
non-SRBR modes. In both regions ¢ (.S,) is a positive and monotonically decreas-

ing function.

Modes with horizontal wavenumbers in the frst region do not have any turning
points and “feel” the top and bottom boundary of the waveguide. In this region
¢1(Sp) and its derivatives can be approximated to arbitrary accuracy by breaking

the water-column up into several small iso-velocity segments, or equivalently, ap-
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proximating Eq. (4.21) with Riemann Sum:

al 1 Y 1
01(Sp) =D 014(Sp) =~ D _di 25 (4.282)
i=1 =1 ?
N
e 1 —S,d;
¢1(Sp) = p Z fSZ (4.28b)
=1 ZZ P
N 2
1 S, dz di
1( p)—;z_ 1 P+ — = (4.28¢)
=\ (F-93) T

where ¢; ;(.Sp) represents the contribution from the i-th segment, and d; is the depth
of the i-th segment. For (S, < 1/cmax), every term in Eq. (4.28a) is a positive but
monotonically decreasing function with negative concavity, so ¢} (S,) < 0, as can
be verif ed by inspection of Eq. (4.28c). Inserting the sign of ¢;(.S),) and ¢/ (S,)
into Eq. (4.27) reveals that 3 > 0 for all SRBR modes in a waveguide with a
pressure-release boundaries, regardless of the SSP.

For non-SRBR modes (1/c¢max < Sp < 1/¢min), Egs. (4.28b) and (4.28¢) are
incorrect because they do not take into account that the limits of the def nite integral
of k,(z) in Eq. (4.21) — the turning points — are themselves functions of 5),. 3
Therefore in SSP segments where a turning point exists, ¢(z) must be represented
with a segment that is not iso-velocity so that the derivative with respect to .S, can
take into account that the limits of the integral in Eq. (4.21) are functions of S),. For
this we use n’-linear segments ([33, Sec. 2.5.1] and [5]), which can be analytically
integrated and are very close to linear for the SSPs typically encountered in ocean

acoustics. A segment with an n2-linear SSP is one of the form

1

where a; and b; are chosen to interpolate the SSP. Each segment can have its own

coordinate system, so without loss of generality let a; < 0.

3See “Leibniz Integral Rule” in any introductory Calculus textbook. Note that although the
value of ¢ (Sp) is not affected by the fact that the integration limits are functions of S, because
k.(z,Sp) = 0 when (z, S;) corresponds to a turning point, the value of ¢ (.S,) is affected.
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Inserting Eq. (4.29) into Eq. (4.21) yields

d;
¢1,i(Sp) = %/0 ( c(i)Z o S%) dz

- ((bi+ aids = S = (i = ™). @30

3ra;

For a segment that contains a turning point, ,/b; + a;d; — S2 = 0 at that turning

point and thus

-2

3ra;

$1.4(S,) (b — 52)°2. 4.31)

To represent an arbitrary SSP, one can use any combination of segments that are
iso-velocity or n2-linear (or any c(z) for which there is a closed form expression of
Eq. (4.21)), as long as the segments that contain turning points are not iso-velocity.

$1(Sp), #1(Sp), ¢ (Sp), which are needed to calculate 3, can then be calcu-
lated quasi-analytically in the sense that the derivatives are taken analytically for
each term of the summation that represents c(z), but the summations themselves
may be computed numerically if there are too many terms to handle analytically.
In the case of a waveguide with a bottom half-space, the function ¢ (.Sy) is also re-
quired to calculate 3 and its derivatives can calculated analytically from Eq. (4.23).

Many waveguides can be suff ciently well represented with just a few seg-
ments and a bottom half-space, and thus 3 can be computed purely analytically
in those cases. In all waveguides, regardless of how complicated the SSP is, ¢; has
a straightforward meaning in the sense that it is easy to qualitatively understand
how the details of the SSP affect ¢1.

4.5 Examples

This section applies the methods described in Secs. 4.2 - 4.4 to calculating 5 in
waveguides with several commonly analyzed SSPs: iso-velocity, a single n?-linear
segment, and a deep-water Munk SSP. For each SSP, S is plotted for a vacuum
bottom and for a fuid halfspace bottom. In addition k(z), ¢1 and ¢q, are plotted

on an x-axis common with the plots of 5 so that their relationship to 8 can be
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easily seen. In all cases that have a fuid bottom halfspace, cyorom = 1650m/s,
Poottom = 1.9 Pwater-

For comparison, the normal mode program Kraken [48] was also used to cal-
culate the value of (8 using the same environmental parameters. 3 was calculated
from Kraken using Eq. 2.27, using only adjacent mode numbers.

All calculations in Kraken used an acoustic source frequency of 250 Hz except
for the deep-water Munk case which used a frequency of 75 Hz. As the frequency
increases, the agreement between Kraken and the methods described in this chapter
tends to improve, as would be expected because the accuracy of the WKB approx-
imation increases with frequency as does the accuracy of approximating the f nite
difference in mode order with a continuous derivative. This agreement provides a

sanity check on the validity of the present analysis.

4.5.1 Iso-velocity SSP: ideal and Pekeris waveguides

An iso-velocity SSP with a vacuum bottom is known as an ideal waveguide. Al-
though [ for an ideal waveguide can be calculated analytically using Eq. (2.15)
because explicit expressions for k,(m,w) can be obtained (See Sec. 2.3.2), the

result is reproduced here for illustrative purposes. For an ideal waveguide

d |1

Calculating ¢ (S,) and ¢/ (S,) and inserting into Eq. (4.27) yields:
B=c*s. (4.33)

As S, — 1/c, which happens as modes move away from being cut off, § — 1, as
shown in Fig. 4.4(c).

An iso-velocity SSP with a bottom f uid halfspace is known as a Pekeris waveg-
uide. ¢1(Sp) is the same as that for an ideal waveguide but the derivatives of
¢dn(Sp) are non-zero, so Eq. (4.26) must be used instead of Eq. (4.27). ¢an(Sp)
for a bottom that is denser and has a faster ¢ than the water just above it always
has the same qualitative shape, shown in Fig. 4.4(b). ¢, (S,) and ¢ (S,) can be

calculated analytically in a straightforward manner, although the result is a lengthy
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expression. Eq. (4.26) can then be used to obtain an analytic estimate of 3 as a
function of S). In the case of a Pekeris waveguide, the WKB approximation is the
exact solution, so the only approximation made in calculating /3 is approximating
the fnite difference in mode number with a continuous derivative. The reason one
can obtain an analytic estimate of 5 in a Pekeris waveguide despite not being able
to analytically solve for k,.(m,w) is that the resulting /3 is a continuous function
of S, instead of being an explicit function of mode number. Figure 4.4(c) shows a

plot of 3 for a Pekeris waveguide.
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Figure 4.4: The waveguide invariant 3 for an ideal and a Pekeris waveguide, and
the functions used to calculate 3, all plotted on a common x-axis scale (the phase
slowness ), normalized by the minimum sound speed in the water column). (a)
k(z) = CE"—Z), which in this case is a constant and equal t